本发明属于粉末冶金材料领域,具体涉及一种基于放电等离子烧结的12cr不锈钢表面强化方法。
背景技术:
不锈钢是社会上应用广泛的绿色环保金属材料,有良好的耐腐蚀性能和耐久性,具有极佳的应用前景。随着工业科技的快速发展,对不锈钢构件的综合性能提出了新的要求,很多关键构件除要求韧性强之外,还对其表面硬度、耐磨性、抗辐照性等指标提出了新的要求。当前研究中,表面渗碳工艺能在保持材料基体韧性的同时,提高材料表面硬度和耐磨性,具有广泛的应用前景。但其存在渗碳过程耗时长的缺点,以固体渗碳为例,低碳钢及低碳合金钢,渗碳层深1.2mm,需要在920℃下保温3~4h才能完成渗碳。且表面渗碳层碳含量难以控制。如何在控制表面渗碳层碳含量的同时,还能在短时间内获得组织均匀且表面强度高的不锈钢材料是当前急需解决的问题。本发明利用放电等离子烧结技术,在制样的同时完成表面渗碳过程,大幅缩短制备时间;通过表层高碳预烧结粉末碳含量的配比,一定程度上实现表层碳含量的调控;且性能优异,新工艺相比传统渗碳法,表面平均硬度提升12~45%。
目前,基于放电等离子烧结技术的应用越来越广。有论文介绍了利用放电等离子烧结技术制备耐腐蚀性能好的w-cr-c梯度涂层[蒋燕.散裂靶材钨块体上碳化钨基梯度涂层的制备及耐腐蚀机理研究[d].中国科学院大学,2015.]。这种方法制备工艺简单,但存在烧结过程中存在样品内应力没有去除缺点,且样品涂层表面性能还有继续改进空间。本发明通过添加后续热处理,消除样品内应力的同时大幅提升了表面渗碳层的硬度。传统的表面渗碳工艺,表面硬度可达到650~780hv,本发明经烧结完经热处理后表面硬度达到940hv。与传统方法相比,硬度提升明显。氧化物弥散强化钢在退火过程中,氧化物纳米粒子进一步析出,y2o3明显粗化[xiaoshengzhou,chongli,limingyu,etal.effectsoftiadditiononmicrostructureandmechanicalpropertyofspark-plasma-sinteredtransformable9cr-odssteels.2018,135:88-94.]。本发明通过球磨过程,制备的样品中富含过饱和y、ti、o元素,热处理过程中有利于样品中析出y-ti-o氧化物弥散强化相,为未来具有高蠕变强度且抗辐照性能优异的ods(oxidedispersionstrengthened,即氧化物弥散强化)钢的表面硬化工艺提供参考。
技术实现要素:
本发明提供了一种基于放电等离子烧结的12cr不锈钢表面强化方法。该方法能较好地控制渗碳层的碳含量,同时在较短时间内实现12cr不锈钢表面强化,包括步骤:配置fe-cr-w-mn-v-ta-ti-y2o3和fe-cr-w-mn-v-ta-ti-y2o3-c两种无碳和高碳成分粉末,按质量百分数之和为100%计,其各组分含量为:12wt%的cr、1.1~1.5wt%的w、0.4~1.0wt%的mn、0.2wt%的v、0.1~0.15wt%的ta、0.3wt%的ti、0.3wt%的y2o3、无碳粉末的c含量为0wt%,高碳粉末的c含量为6wt%,其余为fe。将无碳和高碳两种粉末分别在ar气保护下进行机械球磨合金化,转速260r/min,球料质量比10:1,球磨时间30~50h;将球磨好后的无碳粉末,置入内腔为圆柱形的石墨模具中,在室温下进行预压成形,保压时间1min,压力10mpa;再将球磨好后的高碳粉末均匀撒在无碳的预烧结胚上下两圆面上,预烧结胚圆柱体的底部直径为30mm,每一圆面撒上1.75g高碳预烧结粉末。覆盖均匀后,同样保压时间1min,压力10mpa;将制备好的烧结胚放入放电等离子烧结设备中进行固化烧结,烧结环境为真空,烧结温度950~1000℃,烧结时间4~6min,烧结压力40~50mpa。烧结完成后待烧结设备冷却,将样品从模具中取出,放入ac1和ac3之间温度(780℃~840℃)保温8~10min,进行加热淬火,再在170℃下进行2h低温回火。即可得到表面硬度为914~941hv,芯部硬度为268~310hv的12cr不锈钢。
为实现上述目的,本发明提供如下技术方案:
(1)粉末配置和机械合金化:配置fe-cr-w-mn-v-ta-ti-y2o3无碳和fe-cr-w-mn-v-ta-ti-y2o3-c高碳两种成分粉末,无碳粉末按质量百分数之和为100%计,其各组分含量为:12wt%的cr、1.1~1.5wt%的w、0.4~1.0wt%的mn、0.2wt%的v、0.1~0.15wt%的ta、0.3wt%的ti、0.3wt%的y2o3,其余为fe;高碳粉末按质量百分数之和为100%计,其各组分含量为:12wt%的cr、1.1~1.5wt%的w、0.4~1.0wt%的mn、0.2wt%的v、0.1~0.15wt%的ta、0.3wt%的ti、0.3wt%的y2o3、6wt%的c,其余为fe。将无碳和高碳两种粉末分别在ar气保护下进行机械球磨合金化,转速260r/min,球料比10:1,球磨时间30~50h;球磨的作用在于,在此过程中,粉末颗粒在与球磨介质之间长时间剧烈碰撞、冲击下不断发生冷焊、断裂、颗粒严重变形,内部产生大量缺陷,原子迁移和扩散加快使得合金固溶,便于烧结过程形成析出相,提高材料的抗高温蠕变性。随着球磨的进行,合金粉末逐渐发生团聚,并随着时间的延长逐渐细化,转变为尺寸约为十几微米的等轴晶粒。时间越长,球磨程度越高,但到达一定程度后粉末的尺度就不再发生变化,所以球磨时间在30~50h内便可以满足机械合金化的需求。
(2)烧结胚的制备:将球磨好后的无碳粉末,置入内腔为圆柱形的石墨模具中,在室温下进行预压成形,保压时间1min,压力10mpa;再将球磨好后的高碳粉末均匀撒在不含碳的烧结胚上下两圆面上,烧结胚圆柱体的底部直径为30mm,每一圆面撒上1.75g高碳预烧结粉末。覆盖均匀后,再次保压时间1min,压力10mpa;
(3)放电等离子烧结:将制备好的烧结胚放入放电等离子烧结制备中进行固化烧结,烧结环境为真空,烧结温度950~1000℃,烧结时间4~6min,烧结压力40~50mpa,烧结后待烧结设备冷却,将模具取出。钢的硬度与基体内碳化物的含量有关,随着含碳量的增加,渗碳体含量逐渐增加,所以含碳量越高,钢的强度和硬度就会越高。
(4)一次淬火和低温回火:样品随放电等离子烧结炉冷却至室温,从模具取出后重新加热淬火。淬火温度选择ac1和ac3之间(780℃~840℃),保温时间8~10min。这温度范围处于奥氏体和渗碳体双相区,因而属于不完全淬火,淬火后得到的马氏体基体上分布渗碳体组织,具有极高硬度和高耐磨性。水淬后在170℃下进行2h的低温回火处理,目的是消除烧结和淬火过程中的内应力,保证12cr不锈钢的强度和韧性。最终得到表面平均硬度为914~941hv,芯部硬度为268~310hv的渗碳钢。
本发明显著优点在于:
一、渗碳过程耗时短,本发明利用放电等离子烧结技术,在制样的同时完成表面渗碳过程,大幅缩短制备时间。
二、性能优异,表面平均硬度达到940hv,比传统的表面渗碳工艺硬度提升21~45%。
附图说明
图1为硬度测量点位置示意图,①为表层硬度测定线,②为芯部硬度测定线,③为垂直方向测定线;
图2为实施例1制得的产品的硬度分布图。
具体实施方式
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,作详细说明。本发明的方法如无特殊说明,均为本领域常规方法。
实施例一:
将碳含量不同的两粉末fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3(wt%)和fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3-6c(wt%),分别装入不锈钢球磨罐中,在ar气氛下球磨30h,球磨转速260r/min,球料质量比10:1。球磨后在手套箱保护气氛中筛分,得到预烧结粉末。将不含碳的粉末放置在内腔直径为30mm的石墨模具中,以10mpa压力,保压1min;再在烧结胚上下两圆面,每一圆面上覆盖1.75g的高碳预烧结粉末,同样施加10mpa的压力,保压1min。覆盖上碳纸后,在放电等离子烧结炉中真空烧结,烧结温度950℃,烧结时间5min,烧结压力40mpa,烧结出来的12cr不锈钢,表面平均硬度为686hv。烧结完成后待烧结设备冷却,将样品从模具中取出,在840℃下保温10min,进行水淬后再在170℃下进行2h的低温回火处理,表面平均硬度达到936hv,芯部平均硬度为301hv,显示出明显的硬度梯度差,如图2所示。
实施例二:
将碳含量不同的两种粉末fe-12cr-1.5w-0.4mn-0.2v-0.1ta-0.3ti-0.3y2o3(wt%)和fe-12cr-1.5w-0.4mn-0.2v-0.1ta-0.3ti-0.3y2o3-6c(wt%),分别装入不锈钢球磨罐中,在ar气氛下球磨50h,球磨转速260r/min,球料质量比10:1.球磨后在手套箱保护气氛中筛分,得到预烧结粉末。将不含碳的粉末放置在内腔直径为30mm的石墨模具中,以10mpa压力,保压1min;再在烧结胚上下两圆面,每一圆面上覆盖1.75g的高碳预烧结粉末,同样施加10mpa的压力,保压1min。覆盖上碳纸后,在放电等离子烧结炉中真空烧结,烧结温度1000℃,烧结时间6min,烧结压力50mpa。烧结出来的12cr不锈钢,表面平均硬度为764hv。烧结完成后待烧结设备冷却,将样品从模具中取出,在840℃下保温8min,进行水淬后再在170℃下进行2h的低温回火处理,表面平均硬度达到914hv,芯部硬度为310hv,显示出明显的硬度梯度差,该成分样品热处理后表面硬度不及实施例一和实施例三,但芯部硬度较高。
实施例三:
将碳含量不同的两粉末fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3(wt%)和fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3-6c(wt%),分别装入不锈钢球磨罐中,在ar气氛下球磨45h,球磨转速260r/min,球料质量比10:1。球磨后在手套箱保护气氛中筛分,得到预烧结粉末。将不含碳的粉末放置在内腔直径为30mm的石墨模具中,以10mpa压力,保压1min;再在烧结胚上下两圆面,每一圆面上覆盖1.75g的高碳预烧结粉末,同样施加10mpa的压力,保压1min。覆盖上碳纸后,在放电等离子烧结炉中真空烧结,烧结温度1000℃,烧结时间4min,烧结压力50mpa。将烧结出来的12cr不锈钢样品在780℃下保温10min,进行水淬后再在170℃下进行2h的低温回火处理,表面平均硬度达到941hv,芯部平均硬度为268hv,显示出明显的硬度梯度差。
对比例一:
将碳含量不同的两粉末fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3(wt%)和fe-12cr-1.1w-1.0mn-0.2v-0.15ta-0.3ti-0.3y2o3-0.7c(wt%),分别装入不锈钢球磨罐中,在ar气氛下球磨40h,球磨转速260r/min,球料质量比10:1。球磨后在手套箱保护气氛中筛分,得到球磨粉末。将不含碳的粉末放置在内腔直径为30mm的石墨模具中,保压时间1min,压力10mpa;再在烧结胚上覆盖1.75g的高碳预烧结粉末,同样保压时间1min,压力10mpa。在烧结胚上覆盖0.3mm的不锈钢箔用以隔离外界碳源,再在不锈钢箔上面盖上一层碳纸。放入放电等离子烧结炉中真空烧结,烧结温度950℃,烧结时间5min,烧结压力40mpa,烧结出来的12cr不锈钢,表面平均硬度为585hv,芯部硬度为443hv,显示出一定的硬度梯度差。将样品在780℃下保温3min,进行水淬后再在170℃下进行2h的低温回火处理,因为表层碳含量有限,热处理促进了碳的扩散降低了材料表层硬度;再加上晶粒长大,所以样品表面平均硬度低至475hv。
对比例二:
先将fe-12cr-1.5w-0.4mn-0.2v-0.1ta-0.3ti-0.3y2o3(wt%)预合金粉末,装入不锈钢球磨罐中,在ar气氛下球磨50h制备预烧结铁基粉末,球磨转速260r/min,球料质量比为10:1。球磨后在手套箱保护气氛中筛分,得到预烧结粉末。将上述预烧结粉末装入石墨模具中,把粉末在室温下,保压时间1min,压力10mpa。预压后再盖上碳纸,方便烧结后脱模和保护模具。将上述石墨模具放入sps烧结炉中真空烧结,烧结温度1000℃,烧结时间6min,烧结压力50mpa。然后随炉冷却,得到12cr不锈钢,表层平均硬度为727hv。将样品在840℃下保温8min,进行水淬后再在170℃下进行2h的低温回火处理,表层硬度达到799hv。碳纸和石墨模具给12cr不锈钢样品表面提供了一定含量的碳源,但碳含量太少,使其在后续热处理过程中表面平均硬度提升不明显。
对比例三:
先将fe-12cr-1.5w-0.4mn-0.2v-0.1ta-0.3ti-0.3y2o3(wt%)预合金粉末,装入不锈钢球磨罐中,在ar气氛下球磨40h制备预烧结铁基粉末,球磨转速260r/min,球料质量比为10:1。球磨后在手套箱保护气氛中筛分,得到预烧结粉末。将上述预烧结粉末装入石墨模具中,把粉末在室温下,保压时间1min,压力10mpa,再用厚度为0.3mm不锈钢箔包裹住,用以隔绝石墨模具中的碳。在不锈钢箔上盖上碳纸,方便烧结后脱模和保护模具。将上述石墨模具放入sps烧结炉中真空烧结,烧结温度1000℃,烧结时间6min,烧结压力45mpa。然后随炉冷却,得到12cr不锈钢,表层的平均硬度为534hv,芯部的硬度为530hv。由于不锈钢箔对碳的有效隔离,样品由表层到芯部没有显示出硬度梯度差。将样品在780℃下保温10min,进行水淬后再在170℃下进行2h的低温回火处理,因为短时热处理促进了晶粒的长大,所以硬度稍微降低,热处理后的表面平均硬度达到495hv。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
1.一种基于放电等离子烧结的12cr不锈钢表面强化方法,其特征在于,包括以下步骤:
(1)粉末配置和机械合金化:
配置fe-cr-w-mn-v-ta-ti-y2o3无碳和fe-cr-w-mn-v-ta-ti-y2o3-c高碳两种成分粉末,将二者分别在ar气保护下进行机械球磨合金化,形成预烧结粉末;
(2)烧结胚的制备:
将无碳的预烧结粉末,置入内腔为圆柱形的石墨模具中,在室温下进行预压成形,保压时间1min,压力10mpa;再将高碳的预烧结粉末分别均匀撒在不含碳的烧结胚上下两圆面上,同样保压时间1min,压力10mpa;
(3)放电等离子烧结:
将制备好的烧结胚放入放电等离子体烧结设备中进行固化烧结,得到表面平均硬度为686~764hv的12cr不锈钢;
(4)一次淬火和低温回火:
样品随放电等离子烧结炉冷却至室温,从模具中取出后进行加热淬火;水淬后在170℃下进行2h的低温回火处理,得到表面平均硬度为914~941hv,芯部硬度为268~310hv的12cr不锈钢。
2.根据权利要求1所述的方法,其特征在于,fe-cr-w-mn-v-ta-ti-y2o3无碳粉末按质量百分数之和为100%计,其各组分含量为:12wt%的cr、1.1~1.5wt%的w、0.4~1.0wt%的mn、0.2wt%的v、0.1~0.15wt%的ta、0.3wt%的ti、0.3wt%的y2o3,其余为fe。
3.根据权利要求1所述的方法,其特征在于,fe-cr-w-mn-v-ta-ti-y2o3-c高碳粉末按质量百分数之和为100%计,其各组分含量为:12wt%的cr、1.1~1.5wt%的w、0.4~1.0wt%的mn、0.2wt%的v、0.1~0.15wt%的ta、0.3wt%的ti、0.3wt%的y2o3、6wt%的c,其余为fe。
4.根据权利要求1所述的方法,其特征在于,步骤(1)中球磨参数为:转速260r/min,球料质量比10:1,球磨时间30~50h,形成富含过饱和y、ti、o的预烧结粉。
5.根据权力要求1所述的方法,其特征在于,步骤(2)中将高碳预烧结粉末分别均匀铺在不含碳烧结胚上下两圆面上,每一圆面撒上1.75g,圆面直径为30mm。
6.根据权利要求1所述的方法,其特征在于,步骤(3)中固化烧结的烧结环境为真空,烧结温度950~1000℃,烧结时间4~6min,烧结压力40~50mpa。
7.根据权利要求1所述的方法,其特征在于,步骤(4)中淬火温度为780℃~840℃,保温时间8~10min。
技术总结