冷风机及其控制方法与流程

    专利2022-07-07  145


    本发明属于家用电器技术领域,具体涉及一种冷风机及其控制方法。



    背景技术:

    随着人们生活水平提高,传统的风扇已经逐渐不能满足人们的日常使用需求,带有温度调节功能的风扇逐渐被广泛应用。现有的温度调节风扇通常设置有水箱,水箱里设置有水泵,由水泵抽取水箱中的常温水并且将水输送到水帘上方,通过水帘蒸发吸热,降低周围空气的温度,再由电机驱动风轮转动产生风,带动降温后的空气吹出箱体,达到降温的目的。

    但是,现有的温度调节风扇主要是通过水在水帘上蒸发过程中吸收热能,即在焓值不变的条件下,吸收空气显热,使空气的干球温度降低,实际的降温效果差,经过风轮吹出去的风温度与室温无太大差别,仍然不是冷风,并不能很好的达到降温的目的。

    有鉴于此,提供一种制冷效率更高的温度调节风扇成为一个急需解决的问题。



    技术实现要素:

    本申请的目的在于提供一种冷风机及其控制方法,以解决现有技术中家用风扇使用效果不佳的问题。

    为了实现上述目的,本申请一实施例提供的技术方案如下:

    一种冷风机,包括:

    壳体,其内形成有腔室,所述壳体上具有与所述腔室连通的进风口和出风口,所述进风口和出风口之间形成有第一气流通道;

    流体存储装置,用于容纳冷媒;

    冷却塔组件,其与所述流体存储装置流体连通,所述冷却塔组件可对流经其的冷媒降温;

    换热组件,配置于所述第一气流通道中且与所述冷却塔组件流体连通,所述换热组件可利用经所述冷却塔组件降温后的冷媒对流经其的空气降温;

    气流驱动组件,与所述换热组件配合以将流经所述换热组件的空气引导至所述出风口射出。

    一实施例中,所述冷却塔组件还可对流经其的空气降温,所述腔室内还形成有第二气流通道,所述第二气流通道可将至少部分经所述冷却塔组件降温的空气引导至所述第一气流通道中。

    一实施例中,在所述第一气流通道自进风口向出风口延伸的方向上,所述第二气流通道将经所述冷却塔组件降温的空气引导至所述气流驱动组件的上游。

    一实施例中,所述第二气流通道将经所述冷却塔组件降温的空气引导至所述换热组件和气流驱动组件之间。

    一实施例中,还包括与所述换热组件配合的温度传感器以及与所述第二气流通道配合设置的风阀,所述风阀用于根据所述温度传感器的反馈信号控制所述第二气流通道的开度。

    一实施例中,所述冷却塔组件可被控制地工作在至少两种制冷功率;和/或,所述气流驱动组件和换热组件之间还设置有除湿组件,所述腔室内还形成有第三气流通道,所述第三气流通道可将经所述除湿组件换热后的空气排出所述腔室外。

    一实施例中,还包括与所述换热组件配合的湿度传感器以及与所述第三气流通道配合设置的风阀,所述风阀用于根据所述湿度传感器的反馈信号控制所述第三气流通道的开度。

    一实施例中,所述换热组件与所述流体存储装置流体连通,所述冷风机还包括驱动冷媒在所述流体存储装置、冷却塔组件、以及换热组件之间循环的泵;和/或,

    所述气流驱动组件和换热组件之间还设置有加热组件;和/或,

    所述换热组件为可替换式,所述换热组件可被替换为空气过滤组件。

    本申请一实施例还提供冷风机的控制方法,包括:

    启动所述气流驱动组件,使得空气从所述进风口进入所述壳体内部,并沿所述第一气流通道流经所述换热组件后从所述出风口射出;

    使所述冷风机在第一模式和第二模式之间切换,以改变所述出风口射出空气的温度和/或风量;其中,

    在所述第一模式下,使所述流体存储装置中的冷媒依次流经冷却塔组件和换热组件,所述冷媒在所述冷却塔组件处被降温至第一冷却温度,所述换热组件利用所述第一冷却温度的冷媒将流经其的空气降温至第二冷却温度;

    在所述第二模式下,使所述流体存储装置中的冷媒依次流经冷却塔组件和换热组件,所述冷媒和空气在所述冷却塔组件处被降温至第一冷却温度,所述换热组件利用所述第一冷却温度的冷媒将流经其的空气降温至第二冷却温度,经所述冷却塔组件冷却后的空气通过第二气流通道引导至所述第一气流通道中以增加所述出风口射出空气的风量。

    这样的设置,可以利用冷却塔组件对冷媒进行预冷却,从而使得换热组件可以利用预冷却后的冷媒与流经其的空气进行换热,从而提高冷风机的制冷效果;同时,冷却塔组件还可以同时对流经的空气进行冷却,冷风机可以根据需求,可控制地利用这部分冷却空气对出风进行补充,提供冷风机不同的制冷量和风量。

    附图说明

    为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

    图1是本申请一实施方式中冷风机的模块示意图;

    图2是本申请一实施方案中冷风机的结构爆炸示意图;

    图3为本申请一实施方案中半导体制冷片的结构示意图。

    具体实施方式

    以下将结合附图所示的各实施方式对本发明进行详细描述。但该等实施方式并不限制本发明,本领域的普通技术人员根据该等实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。

    参图1和图2,介绍本申请冷风机100的一具体实施方式。在本实施方式中,该冷风机100包括壳体70、流体存储装置10、冷却塔组件20、换热组件30、以及气流驱动组件40。

    壳体70用于大致构成冷风机100的整体外观,壳体70例如包括前部面板701、后部面板702、侧部面板703和顶板704,并共同合围定义壳体70的外轮廓以及内部腔室。同时,可以根据需要进行包括操控面板705、提持把手(图未示)、带滚轮的底盘706等物理结构的设置,控制面板705可以是与冷风机100内部的电路或控制组件707连接,以供操作者实现对冷风机100的功能调控或设定,关于这部分涉及冷风机100的功能调控或设定将在下文的实施方式中进行叙述,而壳体70上的选择性的其他物理结构由于并未涉及本申请的发明要点,故在此不进行详细地展开。

    壳体70内部形成有腔室,用于容纳上述的流体存储装置10、冷却塔组件20、换热组件30以及气流驱动组件40。壳体70上具有与腔室连通的进风口71和出风口72,进风口71和出风口72之间形成有第一气流通道p1。需要说明的是,本申请附图中示出的壳体70以及布置在腔体内的流体存储装置10、冷却塔组件20、换热组件30以及气流驱动组件40并非是依照实际生产应用的冷风机所示意,而仅仅是用于说明冷风机及各组件的配合方式。

    需要说明的是,这里的第一气流通道p1并非是在物理结构上形成的限定,也即,该第一气流通道p1并非与腔室内的其他空间具有严格的分隔或界限,而只是说明在腔室内存在一气体流通路径,用于供外界的空气自壳体70的进风口71进入腔室、并又自壳体70的出风口72流出腔室,以形成一个完整的空气循环。

    一实施例中,出风口72可以是“双出风口”设计,例如左右分区的出风控制。相应地配合双出风口设置对应的气流驱动装置和导风板,实现对送风区域的灵活控制。并且,这里的气流驱动装置可以设置为贯流风叶,保证大风量的输出,且具有出风柔和和噪音低的特点。

    流体存储装置10用于容纳冷媒,例如水。冷风机100可以包括一泵60,用于驱动流体存储装置10中的冷媒在流体存储装置10、冷却塔组件20、以及换热组件30之间循环。冷媒在不同的热交换功能模块(这里指冷却塔组件20和换热组件30)中进行显热交换或潜热交换,从而冷却空气供出风口72射出。

    在具体的结构设计中,流体存储装置10可以是承载于底盘上,并且流体存储装置10中可以配合设置有水位标、水位传感器等,用于观察流体存储装置10中的水位以及实现对流体存储装置10的自动水量补充等。流体存储装置10设置为可抽拉式,以方便加水以及清洗。

    以下具体地介绍本实施方式一典型的制冷模式下,冷风机100如何实施对射出空气的冷却。

    冷却塔组件20与流体存储装置10流体连通,对流经其的冷媒降温,冷媒在冷却塔组件20处发生显热交换,从而在不相变的情况下降低自身的温度。换热组件30配置于第一气流通道p1中且与冷却塔组件20流体连通,该换热组件30可利用经冷却塔组件20降温后的冷媒对流经其的空气降温。由于冷媒在冷却塔组件20中已经预先被冷却,故相对于未冷却的冷媒,可以在换热组件30处提供更高的换热效率,提高冷风扇的制冷量。

    一实施例中,气流驱动组件40整体地驱动空气在壳体70内部时形成一空气流,利用进风口71和出风口72处风压的不平衡,该空气流通常具有大致稳定的流向,因此该空气流的流动可以是定义了上述的第一气流通道p1。换热组件30在该第一气流通道p1中对形成的空气流进行冷却,例如,换热组件30可以是被配置在临近或者贴近出风口72处,以保证被冷却的空气能经过最短的第一气流通道p1的路径达到出风口72,减少冷量的耗散。

    气流驱动组件40还用于提供空气自出风口72射出的动能,在物理位置上,气流驱动组件40可以与换热组件30相配合,以将流经换热组件30的空气引导至所述出风口72射出。一实施例中,气流驱动组件40可以是配置在第一气流通道p1中的风轮。

    冷却塔组件20还可对流经其的空气降温,在一些工作模式下,这些被降温后的空气被直接通过壳体70上合适位置处的排气口73排出到环境中。排气口73较佳地设置在与进风口71和出风口72较少产生干涉的位置处,以避免或减少对冷风机100制冷效果稳定性的影响。

    在冷风机100需要更大的制冷量和风量时,还可以利用冷却塔组件20降温后的空气进行补充。具体地,壳体70的腔室内还形成有第二气流通道p2,该第二气流通道p2可将至少部分经冷却塔组件20降温的空气引导至第一气流通道p1中。可以理解的是,冷却塔组件20可以配置有集成或者非集成的风机21,该风机21可以提供空气沿第二气流通道p2流动的驱动力,第二气流通道p2可以是通过具有物理结构外形的通道所定义,并通过配合设置的风阀50控制第二气流通道p2的开度。具体地,冷风机可以包括与换热组件30配合的温度传感器31,风阀50通过温度传感器31的反馈信号控制第二气流通道的开度。这样,风阀50通过开度调节控制第二气流通道p2中空气流量的大小,从而调控补充到第一气流通道p1中的空气量。

    在第二气流通道p2将空气引入到第一气流通道p1中的位置选择上,本实施例中,在第一气流通道p1自进风口71向出风口72延伸的方向上,第二气流通道p2将经冷却塔组件20降温的空气引导至气流驱动组件40的上游。更为优选地,第二气流通道p2将经冷却塔组件20降温的空气引导至换热组件30和气流驱动组件40之间,也即第二气流通道p2引入第一气流通道p1的空气不再经过换热组件30的冷却。

    当然,在一些替换的实施例中,第二气流通道p2也可以是将降温的空气直接引导至出风口72,从而不经过第一气流通道p1,同时第二气流通道p2也可以配置独立的气流驱动装置,以实现对出风量和风速的调节。

    冷却塔组件20还可以被控制地工作在至少两种制冷功率,当工作在较高的制冷功率时,冷却塔组件20具有相对较高的热交换效率,在相同时间内对更多的冷媒和空气进行降温;而当工作在较低制冷功率时,冷却塔组件20在相同时间内能够降温的冷媒和空气的体积都相对更少。这里所说的制冷功率可以是由冷却塔组件20配合的风机21所定义,该风机21的转速变化可以提供冷却塔组件20不同的换热效率(制冷效率)。

    为了实现冷风机的除湿功能,气流驱动组件40和换热组件30之间还设置有除湿组件80,壳体70的腔室内还形成有第三气流通道p3,该第三气流通道p3可将经除湿组件80换热后的空气通过排气口73排出腔室外。类似地,第三气流通道p3可以配合设置有风阀51,换热组件30配合设置有湿度传感器32,风阀51根据湿度传感器32的反馈信号控制第三气流通道p3的开度,从而及时将除湿组件80换热后的空气通过排气口73排出腔室外。

    一实施例中,除湿组件80可以包括配合设置的半导体制冷片、散热器、和散热风机。半导体制冷片通常包括若干个彼此间隔串联的n型半导体和p型半导体,以图3为例,当电流通过时,n型半导体中的电子在电场作用下向下移动,在下端与电源的正电荷聚合放热,p型半导体中的空穴在电场作用下向下移动,在下端与电源的负电荷聚合放热;同时,电子与空穴在上端分离,分离时吸收热量。如此,半导体致冷器整体上具有了一个冷端以及与冷端相对的热端。在半导体制冷片的除湿应用中,利用半导体制冷片的冷端对流经的空气冷凝除湿,散热器和散热风机与半导体制冷片的热端配合以耗散热端的热量。

    为了实现冷风机的加热功能,气流驱动组件40和换热组件之间还设置有加热组件90,该加热组件90可以例如是电加热丝。

    在本申请的实施例中,换热组件30为可替换式,例如换热组件30可以配置为便于取出并替换为空气过滤组件33。空气过滤组件33可以是hepa,并通过配合设置pm2.5传感器34、等离子发生器等对流经冷风机的空气实现空气净化功能。

    在上述的实施方式/实施例中,冷风机100中的冷却塔组件20、换热组件30、气流驱动组件40、风阀50、泵60、除湿组件80、加热组件90、以及空气过滤组件33等可以是例如通过内置的控制器实现相应功能的调控,并例如配合接收器和遥控器、集成控制面板等令使用者可以对上述制冷及射出空气流的功能进行按需调节。这里的控制器可以是包括微控制器(microcontrollerunit,mcu)的集成电路,本领域技术人员所熟知的是,微控制器可以包括中央处理单元(centralprocessingunit,cpu)、只读存储模块(read-onlymemory,rom)、随机存储模块(randomaccessmemory,ram)、定时模块、数字模拟转换模块(a/dconverter)、以及若干输入/输出端口。当然,控制器也可以采用其它形式的集成电路,如特定用途集成电路(applicationspecificintegratedcircuits,asic)或现场可编程门阵列(field-programmablegatearray,fpga)等。

    并且,第二气流通道p2、第三气流通道p3以及相应的风阀50、51也可以是通过一个风阀组件501来整体构造,而并非是严格地区分为两个独立的空气流道。

    本申请还提供一种冷风机的控制方法的实施方式,具体包括:

    s11、启动气流驱动组件,使得空气从进风口进入壳体内部,并沿第一气流通道流经换热组件后从出风口射出。

    在冷风机的制冷模式中,气流驱动组件被控制地启动,使得冷风扇产生自出风口射出的空气流。

    s12、使流体存储装置中的冷媒依次流经冷却塔组件和换热组件,冷媒在冷却塔组件处被降温至第一冷却温度,换热组件利用第一冷却温度的冷媒将流经其的空气降温至第二冷却温度。

    冷媒在流经冷却塔组件时进行一次换热,冷媒温度被降低,在换热组件处二次换热时,被冷却的冷媒吸收流经换热组件的空气中的热量,使得空气的温度有效降低。因而,在这种实施方式中,冷风机提供一个额定的制冷功率。

    本申请还提供又一种冷风机的控制方法的实施方式,使得冷风机可以提供多种不同的制冷功率,该控制方法具体包括:

    s21、启动气流驱动组件,使得空气从进风口进入壳体内部,并沿第一气流通道流经换热组件后从出风口射出。

    s22、使冷风机在第一模式和第二模式之间切换,以改变出风口射出空气的温度和/或风量。

    具体的,在第一模式下,使流体存储装置中的冷媒依次流经冷却塔组件和换热组件,冷媒在冷却塔组件处被降温至第一冷却温度,换热组件利用第一冷却温度的冷媒将流经其的空气降温至第二冷却温度。

    这里的第一模式与上一实施方式中冷风机的工作模式类似,利用冷却塔组件对冷媒降温,从而使得冷媒在换热组件处具有更高的热交换效率。

    进一步地,在第二模式下,使流体存储装置中的冷媒依次流经冷却塔组件和换热组件,冷媒和空气在冷却塔组件处被降温至第一冷却温度,换热组件利用第一冷却温度的冷媒将流经其的空气降温至第二冷却温度,经冷却塔组件冷却后的空气通过第二气流通道引导至第一气流通道中以增加出风口射出空气的风量。

    在第二模式中,冷却塔组件处被冷却的空气额外贡献了此时出风口的风量,因此相对第一模式可以提供更大的制冷量和风量。一实施例中,为了配合此时更大制冷量和风量的需求,第二模式中冷却塔组件工作在相对第一模式中更高的功率。

    在具体的冷风机产品中,常用水作为热交换的冷媒,并可以提供包括送风、制冷、制热、除湿、加湿、净化等工作模式。其中的制冷工作模式可以被称作水冷风扇模式,而不制冷工作模式可以被称作风扇模式。

    在送风模式①中,泵、冷却塔组件都不运行,第二气流通道的风阀关闭,气流驱动装置单独启动,出风口射出风量较小的常温空气。

    在送风模式②中,泵不运行,冷却塔组件的风机低功率运行,第二气流通道的风阀打开,气流驱动装置启动,出风口射出风量较大的常温空气。

    在制冷模式①中,泵运行,冷却塔组件的风机低功率运行,第二气流通道的风阀关闭。冷媒在泵的驱动下流经冷却塔组件进行一次换热并降温,随后在换热组件处进行二次换热以降低流经空气的温度,热交换完成后的冷媒回流到流体存储装置中,完成一次冷媒的工作循环;与此同时,冷却塔组件的风机驱动流经冷却塔的空气从排风口排出。

    在制冷模式②中,泵运行,冷却塔组件的风机高功率运行,第二气流通道的风阀打开。冷媒在泵的驱动下流经冷却塔组件进行一次换热并降温,随后在换热组件处进行二次换热以降低流经空气的温度,热交换完成后的冷媒回流到流体存储装置中,完成一次冷媒的工作循环;与此同时,冷却塔组件的风机驱动至少部分流经冷却塔的空气从第二气流通道输送至第一气流通道,提升冷风机的制冷量和风量。

    在制热模式中,冷却塔组件反向运行,第二气流通道的风阀打开。电加热组件开启,气流驱动装置单独启动,出风口射出经加热的空气。

    在除湿模式中,冷却塔组件运行,第二气流通道的风阀打开。除湿组件将经冷却塔组件冷却的空气进行除湿,降低出风口射出空气的湿度。

    在加湿模式中,泵运行,气流驱动装置将流经换热组件的空气从出风口射出。空气在换热组件处被冷却的同时,会提高自身湿度,从而实现冷风机无雾加湿的功能。

    在净化模式中,将换热组件替换为空气过滤组件,气流驱动装置和冷却塔组件可以根据净化功率的需求调节运行档位。

    并且,应当理解的是尽管术语第一、第二等在本文中可以被用于描述各种元件或结构,但是这些被描述对象不应受到这些术语的限制。这些术语仅用于将这些描述对象彼此区分开。例如,第一导模式可以被称为第二模式,并且类似地第二模式也可以被称为第一模式,这并不背离本申请的保护范围。

    并且,在不同的实施方式中可能使用相同的标号或标记,但这并不代表结构或者功能上的联系,而仅仅是为了描述的方便。

    本发明使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本发明使用的与空间相关的描述语。

    当元件或层被称为在另一部件或层“上”、与另一部件或层“连接”时,其可以直接在该另一部件或层上、连接到该另一部件或层,或者可以存在中间元件或层。相反,当部件被称为“直接在另一部件或层上”、“直接连接在另一部件或层上”时,不能存在中间部件或层。

    对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

    此外,应当理解,虽然本说明书按照实施例加以描述,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。


    技术特征:

    1.一种冷风机,其特征在于,包括:

    壳体,其内形成有腔室,所述壳体上具有与所述腔室连通的进风口和出风口,所述进风口和出风口之间形成有第一气流通道;

    流体存储装置,用于容纳冷媒;

    冷却塔组件,其与所述流体存储装置流体连通,所述冷却塔组件可对流经其的冷媒降温;

    换热组件,配置于所述第一气流通道中且与所述冷却塔组件流体连通,所述换热组件可利用经所述冷却塔组件降温后的冷媒对流经其的空气降温;

    气流驱动组件,与所述换热组件配合以将流经所述换热组件的空气引导至所述出风口射出。

    2.根据权利要求1所述的冷风机,其特征在于,所述冷却塔组件还可对流经其的空气降温,所述腔室内还形成有第二气流通道,所述第二气流通道可将至少部分经所述冷却塔组件降温的空气引导至所述第一气流通道中。

    3.根据权利要求2所述的冷风机,其特征在于,在所述第一气流通道自进风口向出风口延伸的方向上,所述第二气流通道将经所述冷却塔组件降温的空气引导至所述气流驱动组件的上游。

    4.根据权利要求3所述的冷风机,其特征在于,所述第二气流通道将经所述冷却塔组件降温的空气引导至所述换热组件和气流驱动组件之间。

    5.根据权利要求2至4任一项所述的冷风机,其特征在于,还包括与所述换热组件配合的温度传感器以及与所述第二气流通道配合设置的风阀,所述风阀用于根据所述温度传感器的反馈信号控制所述第二气流通道的开度。

    6.根据权利要求1所述的冷风机,其特征在于,所述冷却塔组件可被控制地工作在至少两种制冷功率;和/或,所述气流驱动组件和换热组件之间还设置有除湿组件,所述腔室内还形成有第三气流通道,所述第三气流通道可将经所述除湿组件换热后的空气排出所述腔室外。

    7.根据权利要求6所述的冷风机,其特征在于,还包括与所述换热组件配合的湿度传感器以及与所述第三气流通道配合设置的风阀,所述风阀用于根据所述湿度传感器的反馈信号控制所述第三气流通道的开度。

    8.根据权利要求1所述的冷风机,其特征在于,所述换热组件与所述流体存储装置流体连通,所述冷风机还包括驱动冷媒在所述流体存储装置、冷却塔组件、以及换热组件之间循环的泵;和/或,

    所述气流驱动组件和换热组件之间还设置有加热组件;和/或,

    所述换热组件为可替换式,所述换热组件可被替换为空气过滤组件。

    9.一种如上任一项权利要求所述的冷风机的控制方法,其特征在于,包括:

    启动所述气流驱动组件,使得空气从所述进风口进入所述壳体内部,并沿所述第一气流通道流经所述换热组件后从所述出风口射出;

    使所述流体存储装置中的冷媒依次流经冷却塔组件和换热组件,所述冷媒在所述冷却塔组件处被降温至第一冷却温度,所述换热组件利用所述第一冷却温度的冷媒将流经其的空气降温至第二冷却温度。

    10.一种如权利要求2至5任一项所述的冷风机的控制方法,其特征在于,包括:

    启动所述气流驱动组件,使得空气从所述进风口进入所述壳体内部,并沿所述第一气流通道流经所述换热组件后从所述出风口射出;

    使所述冷风机在第一模式和第二模式之间切换,以改变所述出风口射出空气的温度和/或风量;其中,

    在所述第一模式下,使所述流体存储装置中的冷媒依次流经冷却塔组件和换热组件,所述冷媒在所述冷却塔组件处被降温至第一冷却温度,所述换热组件利用所述第一冷却温度的冷媒将流经其的空气降温至第二冷却温度;

    在所述第二模式下,使所述流体存储装置中的冷媒依次流经冷却塔组件和换热组件,所述冷媒和空气在所述冷却塔组件处被降温至第一冷却温度,所述换热组件利用所述第一冷却温度的冷媒将流经其的空气降温至第二冷却温度,经所述冷却塔组件冷却后的空气通过第二气流通道引导至所述第一气流通道中以增加所述出风口射出空气的风量。

    技术总结
    本发明揭示了一种冷风机及其控制方法,用于解决现有技术中冷风机的制冷效果不佳的问题,该冷风机包括壳体,其内形成有腔室,壳体上具有与腔室连通的进风口和出风口,进风口和出风口之间形成有第一气流通道;流体存储装置,用于容纳冷媒;冷却塔组件,其与流体存储装置流体连通,冷却塔组件可对流经其的冷媒降温;换热组件,配置于第一气流通道中且与冷却塔组件流体连通,换热组件可利用经冷却塔组件降温后的冷媒对流经其的空气降温;气流驱动组件,与换热组件配合以将流经换热组件的空气引导至出风口射出。

    技术研发人员:周伙喜;蒲毅
    受保护的技术使用者:杰马科技(中山)有限公司
    技术研发日:2020.12.16
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-8712.html

    最新回复(0)