一种节能型暖通空调系统及楼宇自控方法与流程

    专利2022-07-07  141


    本发明涉及楼宇节能技术领域,具体涉及一种节能型暖通空调系统及楼宇自控方法。



    背景技术:

    中央空调系统越来越广泛的应用于一些大型建筑或者建筑群。中央空调系统由一个或多个冷热源系统和多个空气调节系统组成,该系统不同于传统冷剂式空调,(如单体机,vrv)集中处理空气以达到舒适要求。采用液体气化制冷的原理为空气调节系统提供所需冷量,用以抵消室内环境的热负荷;制热系统为空气调节系统提供所需热量,用以抵消室内环境冷暖负荷。

    现阶段,为了满足高层楼宇建筑中个体办公与工作需求,暖通空调系统被广泛应用,对于暖通系统的管理通常包括分散管理和集中管理两种管理模式,采用分散管理,就地监测和操作将占用大量人力资源,采用集中的管理模式,利用现代的计算机技术和网络系统,实现对所有机电设备的集中管理和自动监测,就能确保站内所有机电设备的安全运行,专利cn109140723a公开了一种分布式楼宇暖通监控系统及方法,实时监控去获取楼宇内部的暖通空调运行期间的有关参数,并进行科学调控与管理;结合高层楼宇建筑不用用途去规划暖通空调的现实负荷状况与功率参数,进而将暖通空调的实用价值凸显出来,同时满足节能降耗的需求。

    虽然cn109140723a能够在科学调控和管理下保证暖通空调系统的安全运行以及降低能耗,但是降低能耗仍然需要建立在实时监测的基础上,耗费大量的监测和运算资源,为控制中心造成了极大的运算负担,容易造成整个系统不稳定,对环境温度的调控能力下降,调节精度降低,同时遵循用户个人习惯调度暖通空调电力分配,仍需要用户自行控制暖通空调终端,难以起到全自动控制,也难以避免由于用户的不佳习惯造成的电力损耗,无法达到最佳节能状态。



    技术实现要素:

    本发明的目的在于提供一种节能型暖通空调系统,以解决现有技术中降低能耗仍然需要建立在实时监测的基础上,耗费大量的监测和运算资源,为控制中心造成了极大的运算负担,以及仍需要用户自行控制暖通空调终端,难以起到全自动控制,也难以避免由于用户的不佳习惯造成的电力损耗,无法达到最佳节能状态的技术问题。

    为解决上述技术问题,本发明具体提供下述技术方案:

    一种节能型暖通空调系统,包括设置在楼宇每个室内的中央空调终端和监测单元,以及对中央空调终端和监测单元进行综合统筹的智慧控制中心,所述中央空调终端用于对楼宇每个室内进行环境调节以营造最适宜人员生活的温控环境,所述监测单元用于对楼宇每个室内的所述温控环境进行实时监测并将监测数据同步反馈到智慧控制中心,所述智慧控制中心利用监测数据构建最优楼宇自控模型并依据最优楼宇自控模型对所述楼宇每个室内实施节能型自控。

    作为本发明的一种优选方案,所述监测单元包括设置在所述中央空调终端的出风口处的用以辨识人员存在情况的人员监测单元和随机分布于楼宇每个室内各位置处用以实时采集环境温度信号的环境监测单元,以及用于人员监测单元和环境监测单元生成信号的数据处理模块。

    作为本发明的一种优选方案,所述人员监测单元包括语音识别模块和红外检测模块,所述语音识别模块实时接收楼宇每个室内的所有语音信号并同步在所述语音信号中辨识出人体语音信号,所述红外检测模块实时检测楼宇每个室内的所有红外信号并同步在所述红外信号中辨识出人体红外信号,所述数据处理模块将人体语音信号和人体红外信号按时序一一对应结合生成表征人员存在情况的人员存在信号,所述人员存在信号生成的具体方式为:

    步骤一:语音识别模块实时生成人体语音信号并同步传输到数据处理模块,红外检测模块实时生成人体红外信号并同步传输到数据处理模块;

    步骤二:数据处理模块对同步接收人体语音信号和人体红外信号作求交集运算生成人员存在信号,具体为:

    t时刻的人体语音信号标记为d,人体红外信号标记为g,则t时刻的人员存在信号为a=dug,其中a、d和g的取值均为0或1,0表示不存在,1表示存在。

    作为本发明的一种优选方案,环境监测单元包括多个用于采集所述楼宇每个室内各位置处温度数据的温度传感器,所述数据处理模块对多个所述温度数据进行分析生成所述环境温度信号,所述环境温度信号的具体方式为:

    步骤一:多个所述温度传感器实时检测楼宇每个室内各位置处的环境温度数据并同步传输到数据处理模块;

    步骤二:数据处理模块同步对多个环境温度数据进行均值化处理生成环境温度信号,具体为:

    t时刻的多个所述环境温度标记为{b1,b2,b3,…,bn},则t时刻的环境温度信号为其中i取值范围为(1,n),n为温度传感器总数量。

    作为本发明的一种优选方案,本发明提供了一种用于所述节能型暖通空调系统的楼宇自控方法,包括以下步骤:

    步骤s1、监测单元实时监测楼宇每个室内生成人员存在信号和环境温度信号,并同步上传到智慧控制中心;

    步骤s2、智慧控制中心同步对人员存在信号和环境温度信号进行分析并同步向楼宇每个室内的中央空调终端签发控制指令,同时记录控制指令和执行控制指令的时刻生成楼宇每个室内的执行日志;

    步骤s3、中央空调终端依据控制指令执行对楼宇每个室内进行构建出最适宜人员生活的温控环境的调节操作;

    步骤s4、智慧控制中心提取楼宇每个室内的执行日志,并以楼宇每个室内的执行日志为样本数据集建立最优楼宇自控模型;

    步骤s5、智慧控制中心依据最优楼宇自控模型向楼宇每个室内的中央空调终端签发最优控制指令,以省去监测单元对温控环境的实时监测以及智慧控制中心实时研判环境温度信号实现运算、电力资源的节省和环境调节效率的提高。

    作为本发明的一种优选方案,所述步骤s2中,智慧控制中心向楼宇每个室内的中央空调终端签发控制指令的具体方式为:

    若楼宇每个室内的人员存在信号a取值为0,智慧控制中心向楼宇每个室内的中央空调终端签发不启动的控制指令;

    若楼宇每个室内的人员存在信号a取值为1,将环境温度信号和最适宜人员生活的温控环境的温度标准相比较:

    在环境温度信号低于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心向对应楼宇每个室内的中央空调终端签发启动升温的控制指令;

    在环境温度信号高于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心向对应楼宇每个室内的中央空调终端签发不启动的控制指令。

    作为本发明的一种优选方案,所述步骤s3中,所述楼宇每个室内分别标记为r1,r2,…,rm,其中m为楼宇中包含的室内总数,所述楼宇每个室内的执行日志分别标记为{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]},其中,ts1,ts2,…,tsm分别为楼宇每个室内的执行控制指令的时刻集合,x1,x2,…,xm分别为楼宇每个室内的控制指令集合。

    作为本发明的一种优选方案,所述步骤s4中,智慧控制中心建立楼宇自控模型的具体方式为:

    步骤s401、样本数据预处理:对楼宇每个室内的执行日志{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]}进行数据清洗和规范化处理,整理成标准的样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]},其中,feature为样本特征作为模型输入,label为样本标签作为模型输出;

    步骤s402、样本数据集分割:随机将样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]}逐一分割成60%,15%,15%三个部分,分别作为训练模型的训练集、调优模型的验证集和评价模型的测试集;

    步骤s403、最优楼宇自控模型建立:在楼宇每个室内r1,r2,…,rm的训练集上分别运用分类模型算法,生成掌控楼宇每个室内调控规律r1,r2,…,rm的初始楼宇自控模型,并将验证集和测试集运用到初始楼宇自控模型上进行性能评估和参数调优获得最优楼宇自控模型标记为m1,m2,m3,…,mm;

    步骤s404、最优楼宇自控模型更新:定期更新楼宇每个室内的执行日志,重复步骤s401至步骤s403进行定期更新最优楼宇自控模型。

    作为本发明的一种优选方案,所述步骤s5,智慧控制中心依据最优楼宇自控模型向中央空调终端签发控制指令的具体方式为:

    步骤s501、智慧控制中心关闭楼宇每个室内r1,r2,…,rm中的监测单元直接以当前时刻点输入最优楼宇自控模型m1,m2,m3,…,mm输出对楼宇每个室内r1,r2,…,rm的中央空调终端的初始控制指令x1,x2,…,xm;

    步骤s502、智慧控制中心重新开启楼宇每个室内r1,r2,…,rm中的监测单元的人员监测单元接收人员存在信号a1,a2,…,am,将控制指令x1,x2,…,xm和人员存在信号a1,a2,…,am对应项分析生成最优控制指令;

    步骤s503、将最优控制指令签发到中央空调终端。

    作为本发明的一种优选方案,所述步骤s502中,最优控制指令具体为:

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为0,最优控制指令为不启动;

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为1,最优控制指令为x1,x2,…,xm。

    本发明与现有技术相比较具有如下有益效果:

    本发明对楼宇的每个室内进行楼宇自控模型建立,楼宇自控模型通过楼宇每个室内用户的中央空调终端的执行日志训练掌握了楼宇每个室内用户的使用习惯,以时刻为输入获得输出为对中央空调终端施加的将楼宇每个室内的环境构建成最适宜人员生活的温控环境的控制指令,避免了监测单元对温控环境的实时监测以及智慧控制中心实时研判环境温度信号实现运算、电力资源的节省和环境调节效率的提高,并且对楼宇每个室内的中央空调进行自动控制,满足用户使用需求的同时避免由于用户的不佳习惯造成的电力损耗,达到最佳节能状态。

    附图说明

    为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。

    图1为本发明实施例提供的节能型暖通空调系统结构框图;

    图2为本发明实施例提供的楼宇自控方法流程图。

    图中的标号分别表示如下:

    1-中央空调终端;2-监测单元;3-智慧控制中心;

    201-人员监测单元;202-环境监测单元;203-数据处理模块;

    2011-语音识别模块;2012-红外检测模块。

    具体实施方式

    下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

    如图1所示,本发明提供了一种节能型暖通空调系统,包括设置在楼宇每个室内的中央空调终端1和监测单元2,以及对中央空调终端1和监测单元2进行综合统筹的智慧控制中心3,所述中央空调终端1用于对楼宇每个室内进行环境调节以营造最适宜人员生活的温控环境,所述监测单元2用于对楼宇每个室内的所述温控环境进行实时监测并将监测数据同步反馈到智慧控制中心3,所述智慧控制中心3利用监测数据构建最优楼宇自控模型并依据最优楼宇自控模型对所述楼宇每个室内实施节能型自控。

    在实际使用中将中央空调终端1设置在楼宇每个室内底壁中,中央空调终端1的出风口朝向楼宇每个室内顶壁以利用暖空气上浮冷空气下沉原理延缓暖空气散发积聚热量达到楼宇每个室内的保温效果,延长室内的保温效果可以在一定程度上减少中央空调终端1启动升温的次数,从而起到节能的效果。

    利用语音信号和红外信号相结合的方式判断楼宇每个室内的人员存在情况,双方面确认准确度更高,避免单方面确认导致的误判影响后续自控模型建立。

    所述监测单元2包括设置在所述中央空调终端1的出风口处的用以辨识人员存在情况的人员监测单元2012和随机分布于楼宇每个室内各位置处用以实时采集环境温度信号的环境监测单元2022,以及用于人员监测单元2012和环境监测单元2022生成信号的数据处理模块203。

    所述人员监测单元2012包括语音识别模块2011和红外检测模块2012,所述语音识别模块2011实时接收楼宇每个室内的所有语音信号并同步在所述语音信号中辨识出人体语音信号,所述红外检测模块2012实时检测楼宇每个室内的所有红外信号并同步在所述红外信号中辨识出人体红外信号,所述数据处理模块203将人体语音信号和人体红外信号按时序一一对应结合生成表征人员存在情况的人员存在信号,所述人员存在信号生成的具体方式为:

    步骤一:语音识别模块2011实时生成人体语音信号并同步传输到数据处理模块203,红外检测模块2012实时生成人体红外信号并同步传输到数据处理模块203;

    步骤二:数据处理模块203对同步接收人体语音信号和人体红外信号作求交集运算生成人员存在信号,具体为:

    t时刻的人体语音信号标记为d,人体红外信号标记为g,则t时刻的人员存在信号为a=dug,其中a、d和g的取值均为0或1,0表示不存在,1表示存在。

    逐一计算t时刻楼宇每个室内的人体语音信号和人体红外信号生成楼宇每个室内的人员存在信号:楼宇每个室内标记为r1,r2,…,rm,则t时刻的楼宇每个室内的人员存在信号为t:{r1:[a1],r2:[a2],…,rm:[am]}。

    环境监测单元2022包括多个用于采集所述楼宇每个室内各位置处温度数据的温度传感器,所述数据处理模块203对多个所述温度数据进行分析生成所述环境温度信号,所述环境温度信号的具体方式为:

    步骤一:多个所述温度传感器实时检测楼宇每个室内各位置处的环境温度数据并同步传输到数据处理模块203;

    步骤二:数据处理模块203同步对多个环境温度数据进行均值化处理生成环境温度信号,具体为:

    t时刻的多个所述环境温度标记为{b1,b2,b3,…,bn},则t时刻的环境温度信号为其中i取值范围为(1,n),n为温度传感器总数量。

    逐一计算t时刻楼宇每个室内的多个所述环境温度的平均值:楼宇每个室内标记为r1,r2,…,rm,则t时刻的楼宇每个室内的环境温度信号为t:{r1:[b1],r2:[b2],…,rm:[bm]}。

    如图2所示,基于节能型暖通空调系统的结构,本发明提供了一种楼宇自控方法,包括以下步骤:

    步骤s1、监测单元实时监测楼宇每个室内生成人员存在信号和环境温度信号,并同步上传到智慧控制中心;

    其中,监测单元实时监测楼宇每个室内生成人员存在信号和环境温度信号为:{r1:[a1],r2:[a2],…,rm:[am]}和{r1:[b1],r2:[b2],…,rm:[bm]}。

    步骤s2、智慧控制中心同步对人员存在信号和环境温度信号进行分析并同步向楼宇每个室内的中央空调终端签发控制指令;

    所述步骤s2中,智慧控制中心向楼宇每个室内的中央空调终端签发控制指令的具体方式为:

    若楼宇每个室内的人员存在信号a取值为0,智慧控制中心向楼宇每个室内的中央空调终端签发不启动的控制指令,具体为:向{r1:[a1],r2:[a2],…,rm:[am]}中a1,a2,…,am取值为0的对应的r1,r2,…,rm的中央空调终端签发不启动的控制指令。

    若楼宇每个室内的人员存在信号a取值为1,将环境温度信号和最适宜人员生活的温控环境的温度标准相比较:

    在环境温度信号低于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心向对应楼宇每个室内的中央空调终端签发启动升温的控制指令;

    在环境温度信号高于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心向对应楼宇每个室内的中央空调终端签发不启动的控制指令。

    向t:{r1:[a1],r2:[a2],…,rm:[am]}中a1,a2,…,am取值为1,以及t:{r1:[b1],r2:[b2],…,rm:[bm]}中b1,b2,…,bm低于最适宜人员生活的温控环境的温度标准对应的r1,r2,…,rm的中央空调终端签发启动升温的控制指令,向t:{r1:[a1],r2:[a2],…,rm:[am]}中a1,a2,…,am取值为1,以及t:{r1:[b1],r2:[b2],…,rm:[bm]}中b1,b2,…,bm高于最适宜人员生活的温控环境的温度标准对应的r1,r2,…,rm的中央空调终端签发不启动的控制指令。

    步骤s3、中央空调终端依据控制指令执行对楼宇每个室内进行构建出最适宜人员生活的温控环境的调节操作,同时记录控制指令和执行控制指令的时刻生成楼宇每个室内的执行日志;

    所述步骤s3中,所述楼宇每个室内分别标记为r1,r2,…,rm,其中m为楼宇中包含的室内总数,所述楼宇每个室内的执行日志分别标记为{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]},其中,ts1,ts2,…,tsm分别为楼宇每个室内的执行控制指令的时刻集合,x1,x2,…,xm分别为楼宇每个室内的控制指令集合。

    其中,ts1,ts2,…,tsm以24时计时制进行单日存储。

    为了更好的理解,举例说明:r1中以00:00为执行控制指令的起始时刻,以10分钟为时刻间隔,对应的控制指令为y1;执行控制指令的下一时刻为:00:10,对应的控制指令y2,一直到最终监测时刻23:50,对应的控制指令y71,执行控制指令的时刻为23:50,则ts1={day1:[00:00,00:10,…,23:50];day2:[00:00,00:10,…,23:50];…;dayk:[00:00,00:10,…,23:50]};x1={day1:[y1,y2,…,yp];day2:[y1,y2,…,yp];…;dayk:[y1,y2,…,yp]},k为执行日志的单日存储的天数,p=24*60(分钟)/时间间隔(分钟),r1的执行日志为r1:[ts1,x1]。

    其中,由于智慧控制中心是以mapreduce计算模型为框架组合多个计算主机和服务器构建的具有高性能并行计算能力的大数据分布式系统,因此智慧控制中心具有快速的计算能力,从而使监测单元实时监测生成人员存在信号和环境温度信号的时刻和智慧控制中心生成控制指令的时刻相一致,因而t:{r1:[a1],r2:[a2],…,rm:[am]}和t:{r1:[b1],r2:[b2],…,rm:[bm]}中的t与[00:00,00:10,…,23:50]相一致,即00:00时刻的{r1:[a1],r2:[a2],…,rm:[am]}和{r1:[b1],r2:[b2],…,rm:[bm]}对应的控制指令为y1。

    时间间隔可根据需要自行调整,本实施例中的10分钟为方便描述的示例

    步骤s4、智慧控制中心提取楼宇每个室内的执行日志,并以楼宇每个室内的执行日志为样本数据集建立最优楼宇自控模型;

    所述步骤s4中,智慧控制中心建立楼宇自控模型的具体方式为:

    步骤s401、样本数据预处理:对楼宇每个室内的执行日志{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]}进行数据清洗和规范化处理,整理成标准的样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]},其中,feature为样本特征作为模型输入,label为样本标签作为模型输出;

    以r1为例,对ts1={day1:[00:00,00:10,…,23:50];day2:[00:00,00:10,…,23:50];…;dayk:[00:00,00:10,…,23:50]};x1={day1:[y1,y2,…,yp];day2:[y1,y2,…,yp];…;dayk:[y1,y2,…,yp]}整理成标准形式为feature{[00:00,00:10,…,23:50];day2:[00:00,00:10,…,23:50];…;[00:00,00:10,…,23:50]},label{[y1,y2,…,yp];[y1,y2,…,yp];…;[y1,y2,…,yp]};

    步骤s402、样本数据集分割:随机将样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]}逐一分割成60%,15%,15%三个部分,分别作为训练模型的训练集、调优模型的验证集和评价模型的测试集;

    步骤s403、最优楼宇自控模型建立:在楼宇每个室内r1,r2,…,rm的训练集上分别运用分类模型算法,生成掌控楼宇每个室内调控规律r1,r2,…,rm的初始楼宇自控模型,并将验证集和测试集运用到初始楼宇自控模型上进行性能评估和参数调优获得最优楼宇自控模型标记为m1,m2,m3,…,mm;

    以m1为例,m1的模型输入为00:00,00:10,…,23:50,输出为对r1在00:00-23:50时刻间的执行指令y1,y2,…,yp。

    步骤s404、最优楼宇自控模型更新:定期更新楼宇每个室内的执行日志,重复步骤s401至步骤s403进行定期更新最优楼宇自控模型。

    为最优楼宇自控模型设置更新周期时限为一周、一月或其他时间,在当前最优楼宇自控模型执行满更新周期后,开启监测单元重新对楼宇每个室内r1,r2,…,rm进行实时监测新的生成人员存在信号和环境温度信号,智慧控制中心同步对新的人员存在信号和环境温度信号进行分析并同步向楼宇每个室内的中央空调终端签发新的控制指令,同时记录控制指令和执行控制指令的时刻生成楼宇每个室内的新的执行日志,即新{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]};

    在当前最优楼宇自控模型基础上,用新{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]}替换原有的{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]},依次进行步骤s401至步骤s403,实现对当前最优楼宇自控模型进行更新,以适应由于人员调动、装修等情况导致环境状态改变,定期更新能够贴近办公环境的真实使用情况。

    所述步骤s5,智慧控制中心依据最优楼宇自控模型向中央空调终端签发控制指令的具体方式为:

    步骤s501、智慧控制中心关闭楼宇每个室内r1,r2,…,rm中的监测单元直接以当前时刻点输入最优楼宇自控模型m1,m2,m3,…,mm输出对楼宇每个室内r1,r2,…,rm的中央空调终端的初始控制指令x1,x2,…,xm;

    步骤s502、智慧控制中心重新开启楼宇每个室内r1,r2,…,rm中的监测单元的人员监测单元接收人员存在信号a1,a2,…,am,将控制指令x1,x2,…,xm和人员存在信号a1,a2,…,am对应项分析生成最优控制指令;

    步骤s503、将最优控制指令签发到中央空调终端。

    所述步骤s502中,最优控制指令具体为:

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为0,最优控制指令为不启动;

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为1,最优控制指令为x1,x2,…,xm。

    根据最优楼宇自控模型在签发控制指令前再次确认是否有人员存在,可以弥补楼宇自控模型产生的误判,避免中央空调终端空转导致电力资源浪费。

    本发明对楼宇的每个室内进行楼宇自控模型建立,楼宇自控模型通过楼宇每个室内用户的中央空调终端的执行日志训练掌握了楼宇每个室内用户的使用习惯,以时刻为输入获得输出为对中央空调终端施加的将楼宇每个室内的环境构建成最适宜人员生活的温控环境的控制指令,避免了监测单元对温控环境的实时监测以及智慧控制中心实时研判环境温度信号实现运算、电力资源的节省和环境调节效率的提高,并且对楼宇每个室内的中央空调进行自动控制,满足用户使用需求的同时避免由于用户的不佳习惯造成的电力损耗,达到最佳节能状态。

    以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。


    技术特征:

    1.一种节能型暖通空调系统,其特征在于:包括设置在楼宇每个室内的中央空调终端(1)和监测单元(2),以及对中央空调终端(1)和监测单元(2)进行综合统筹的智慧控制中心(3),所述中央空调终端(1)用于对楼宇每个室内进行环境调节以营造最适宜人员生活的温控环境,所述监测单元(2)用于对楼宇每个室内的所述温控环境进行实时监测并将监测数据同步反馈到智慧控制中心(3),所述智慧控制中心(3)利用监测数据构建最优楼宇自控模型并依据最优楼宇自控模型对所述楼宇每个室内实施节能型自控。

    2.根据权利要求2所述的一种节能型暖通空调系统,其特征在于:所述监测单元(2)包括设置在所述中央空调终端的出风口处的用以辨识人员存在情况的人员监测单元(201)和随机分布于楼宇每个室内各位置处用以实时采集环境温度信号的环境监测单元(202),以及用于人员监测单元和环境监测单元生成信号的数据处理模块(203)。

    3.根据权利要求3所述的一种节能型暖通空调系统,其特征在于:所述人员监测单元(201)包括语音识别模块(2011)和红外检测模块(2012),所述语音识别模块(2011)实时接收楼宇每个室内的所有语音信号并同步在所述语音信号中辨识出人体语音信号,所述红外检测模块(2012)实时检测楼宇每个室内的所有红外信号并同步在所述红外信号中辨识出人体红外信号,所述数据处理模块(203)将人体语音信号和人体红外信号按时序一一对应结合生成表征人员存在情况的人员存在信号,所述人员存在信号生成的具体方式为:

    步骤一:语音识别模块(2011)实时生成人体语音信号并同步传输到数据处理模块(203),红外检测模块(2012)实时生成人体红外信号并同步传输到数据处理模块(203);

    步骤二:数据处理模块(203)对同步接收人体语音信号和人体红外信号作求交集运算生成人员存在信号,具体为:

    t时刻的人体语音信号标记为d,人体红外信号标记为g,则t时刻的人员存在信号为a=dug,其中a、d和g的取值均为0或1,0表示不存在,1表示存在。

    4.根据权利要求3所述的一种节能型暖通空调系统,其特征在于:环境监测单元(202)包括多个用于采集所述楼宇每个室内各位置处温度数据的温度传感器,所述数据处理模块(203)对多个所述温度数据进行分析生成所述环境温度信号,所述环境温度信号的具体方式为:

    步骤一:多个所述温度传感器实时检测楼宇每个室内各位置处的环境温度数据并同步传输到数据处理模块;

    步骤二:数据处理模块同步对多个环境温度数据进行均值化处理生成环境温度信号,具体为:

    t时刻的多个所述环境温度标记为{b1,b2,b3,…,bn},则t时刻的环境温度信号为其中i取值范围为(1,n),n为温度传感器总数量。

    5.一种用于权利要求1-4任一项所述节能型暖通空调系统的楼宇自控方法,其特征在于,包括以下步骤:

    步骤s1、监测单元(2)实时监测楼宇每个室内生成人员存在信号和环境温度信号,并同步上传到智慧控制中心(3);

    步骤s2、智慧控制中心(3)同步对人员存在信号和环境温度信号进行分析并同步向楼宇每个室内的中央空调终端(1)签发控制指令,同时记录控制指令和执行控制指令的时刻生成楼宇每个室内的执行日志;

    步骤s3、中央空调终端(1)依据控制指令执行对楼宇每个室内进行构建出最适宜人员生活的温控环境的调节操作;

    步骤s4、智慧控制中心(3)提取楼宇每个室内的执行日志,并以楼宇每个室内的执行日志为样本数据集建立最优楼宇自控模型;

    步骤s5、智慧控制中心(3)依据最优楼宇自控模型向楼宇每个室内的中央空调终端(1)签发最优控制指令,以省去监测单元(2)对温控环境的实时监测以及智慧控制中心(3)实时研判环境温度信号实现运算、电力资源的节省和环境调节效率的提高。

    6.根据权利要求5所述的一种楼宇自控方法,其特征在于,所述步骤s2中,智慧控制中心(3)向楼宇每个室内的中央空调终端(1)签发控制指令的具体方式为:

    若楼宇每个室内的人员存在信号a取值为0,智慧控制中心(3)向楼宇每个室内的中央空调终端(1)签发不启动的控制指令;

    若楼宇每个室内的人员存在信号a取值为1,将环境温度信号和最适宜人员生活的温控环境的温度标准相比较:

    在环境温度信号低于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心(3)向对应楼宇每个室内的中央空调终端(1)签发启动升温的控制指令;

    在环境温度信号高于最适宜人员生活的温控环境的温度标准情况下,智慧控制中心(3)向对应楼宇每个室内的中央空调终端(1)签发不启动的控制指令。

    7.根据权利要求6所述的一种楼宇自控方法,其特征在于,所述步骤s3中,所述楼宇每个室内分别标记为r1,r2,…,rm,其中m为楼宇中包含的室内总数,所述楼宇每个室内的执行日志分别标记为{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]},其中,ts1,ts2,…,tsm分别为楼宇每个室内的执行控制指令的时刻集合,x1,x2,…,xm分别为楼宇每个室内的控制指令集合。

    8.根据权利要求7所述的一种楼宇自控方法,其特征在于,所述步骤s4中,智慧控制中心(3)建立楼宇自控模型的具体方式为:

    步骤s401、样本数据预处理:对楼宇每个室内的执行日志{r1:[ts1,x1]},r2:[ts2,x2]},…,rm:[tsm,xm]}进行数据清洗和规范化处理,整理成标准的样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]},其中,feature为样本特征作为模型输入,label为样本标签作为模型输出;

    步骤s402、样本数据集分割:随机将样本数据集feature{r1:[ts1],r2:[ts2],…,rm:[tsm]},label{r1:[x1],r2:[x2],…,rm:[xm]}逐一分割成60%,15%,15%三个部分,分别作为训练模型的训练集、调优模型的验证集和评价模型的测试集;

    步骤s403、最优楼宇自控模型建立:在楼宇每个室内r1,r2,…,rm的训练集上分别运用分类模型算法,生成掌控楼宇每个室内调控规律r1,r2,…,rm的初始楼宇自控模型,并将验证集和测试集运用到初始楼宇自控模型上进行性能评估和参数调优获得最优楼宇自控模型标记为m1,m2,m3,…,mm;

    步骤s404、最优楼宇自控模型更新:定期更新楼宇每个室内的执行日志,重复步骤s401至步骤s403进行定期更新最优楼宇自控模型。

    9.根据权利要求8所述的一种楼宇自控方法,其特征在于,所述步骤s5,智慧控制中心(3)依据最优楼宇自控模型向中央空调终端(1)签发控制指令的具体方式为:

    步骤s501、智慧控制中心(3)关闭楼宇每个室内r1,r2,…,rm中的监测单元(2)直接以当前时刻点输入最优楼宇自控模型m1,m2,m3,…,mm输出对楼宇每个室内r1,r2,…,rm的中央空调终端(1)的初始控制指令x1,x2,…,xm;

    步骤s502、智慧控制中心(3)重新开启楼宇每个室内r1,r2,…,rm中的监测单元(2)的人员监测单元接收人员存在信号a1,a2,…,am,将控制指令x1,x2,…,xm和人员存在信号a1,a2,…,am对应项分析生成最优控制指令;

    步骤s503、将最优控制指令签发到中央空调终端(1)。

    10.根据权利要求9所述的一种楼宇自控方法,其特征在于,所述步骤s502中,最优控制指令具体为:

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为0,最优控制指令为不启动;

    若楼宇每个室内的人员存在信号a1,a2,…,am取值为1,最优控制指令为x1,x2,…,xm。

    技术总结
    本发明公开了一种节能型暖通空调系统,包括设置在楼宇每个室内的中央空调终端和监测单元,以及对中央空调终端和监测单元进行综合统筹的智慧控制中心,所述中央空调终端用于对楼宇每个室内进行环境调节以营造最适宜人员生活的温控环境,所述监测单元用于对楼宇每个室内的所述温控环境进行实时监测并将监测数据同步反馈到智慧控制中心。本发明避免了监测单元对温控环境的实时监测以及智慧控制中心实时研判环境温度信号实现运算、电力资源的节省和环境调节效率的提高,并且对楼宇每个室内的中央空调进行自动控制,满足用户使用需求的同时避免由于用户的不佳习惯造成的电力损耗,达到最佳节能状态。

    技术研发人员:杨婉
    受保护的技术使用者:成都航空职业技术学院
    技术研发日:2020.11.30
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-8454.html

    最新回复(0)