一种光纤式收敛计及其使用方法与流程

    专利2022-07-07  163


    本发明属于光纤传感技术领域,具体涉及一种用于地下巷道横截面变形监测的光纤式收敛计及其使用方法。



    背景技术:

    随着国家经济建设的不断发展,各种工程设施如大坝、桥梁、隧道、高层建筑等也在迅猛建设中,这些设施在建成后,为了保证它们的正常运营,需要对关键部位的空间位置及其变形进行长时间定期检测,获得位置变动量,并对长期积累的数据进行分析,以确定现有结构的承载能力,使用耐久性等,确保工程结构处于良好的工作状态并预测结构的安全程度,因此,对各种类型的大型工程设施开展位移、沉降等变形监测,从安全及经济方面都很有必要性。

    隧道、矿道、坑道等地下巷道在施工及营运中会产生形变,为确保地下巷道的安全,对其断面收敛变形的监测就显得尤为重要。目前常用的巷道断面变形监测方法主要有两大类,一类是非接触式的,主要有全站仪、激光收敛计、数字化近景摄影测量等方法,这些方法均对测试现场的通视条件要求较高,且不能实现长期、实时、在线测量;另一类是接触式的,主要有收敛计、巴塞特收敛测量系统和光纤式收敛系统,其中收敛计现已实现自动化测量,精度可达0.01mm,但对工程施工和运营干扰较大,不适用于长期监测;巴塞特收敛测量系统采用成对的电解质传感器来测量已知长度(或臂杆)的位移变化,以获得各测点间的相对位移,具有高精度和自动化等特点,该系统安装在巷道内紧贴洞壁,没有视线要求,可几乎实时生成巷道断面的轮廓,但该系统安装困难、调试耗时长、成本高,易受地下工程高温高湿的影响而不能长期稳定工作,且运营期维护困难,基本无法修复;现有光纤式收敛系统主要采用基于布里渊散射的分布式光纤应变和温度传感机理(cn102384725b),光纤本身作为传感器,通过胶粘或定点固定的方法把光纤安装在隧道断面上,通过标定传感器标距长度收敛值与传感光纤应变变化量之间的相关性,将其转换为隧道断面的收敛状态变化信息实现隧道变形监测,该方法的优点是可实现大范围分布式测量、耐高温、耐腐蚀,且由于光纤较好的柔韧性可适配任何形状的隧道截面,缺点是测量精度不高,配套光纤传感解调主机价格昂贵,少则数十万,多则上百万。

    近年来,随着光纤光栅传感技术的飞速发展,有部分研究人员尝试将光纤光栅应用于收敛位移接触式测量,但仅实现了隧道变形的局部测量,未形成能用于地下巷道横截面整体变形测量的长期监测系统。



    技术实现要素:

    本发明的目的是设计一种光纤式收敛计及其使用方法,用于地下巷道横截面变形的监测,该光纤式收敛计结合光纤光栅抗干扰能力强及易串联复用组网等特点,将传输光缆植入于带状柔性基底内部,紧贴地下巷道内壁表面布设,采用多通道光纤光栅解调仪实现传感信号的解调,实时监测光纤光栅的中心波长变化值,实现地下巷道横截面变形的长期在线监测。

    本发明的目的可采用如下技术方案来实现:一种光纤式收敛计及其使用方法,光纤式收敛计包括带状柔性基底、保护层、传输光缆、光纤光栅阵列和光纤光栅解调仪,所述的带状柔性基底与保护层固定在一起;所述的传输光缆设置在带状柔性基底的表面上或内嵌在保护层内部,传输光缆的一端伸出保护层与光纤光栅解调仪连接;所述的光纤光栅阵列由刻蚀在传输光缆内部光纤上的多个光纤光栅构成;所述的光纤光栅解调仪实时解调光纤光栅阵列中每一个光纤光栅的中心波长变化值。

    所述的光纤光栅阵列上的光纤光栅为等间隔布设,或根据实际测试需求定制不同间距。

    所述的光纤光栅阵列由不同中心波长的高反射率光纤光栅构成,或由同一中心波长的低反射率弱光栅构成。

    所述的光纤光栅阵列中有大于一个光纤光栅用于进行温度传感,并用于补偿其余光纤光栅用作应变测量时的温度影响。

    所述的带状柔性基底材质为钢材、pvc或形状记忆合金。

    所述的保护层材质为环氧树脂胶、硅胶或硫化橡胶。

    所述的光纤式收敛计的使用方法,包括如下步骤:

    s1:将光纤式收敛计紧贴地下巷道内壁安装,绕地下巷道横截面内壁近一周;

    s2:将传输光缆的一端接入光纤光栅解调仪,通过光纤光栅解调仪实时监测光纤光栅的中心波长变化值;

    s3:根据预先标定的光纤光栅波长变化量和曲率之间的比例关系,将光栅的波长变化量转换为光纤光栅所在部位的收敛计曲率值;

    s4:由光纤式收敛计上收集的各光纤光栅的位置信息及其曲率值通过二维曲线重建算法构建出光纤式收敛计的二维形状,即地下巷道横截面内壁的变形曲线,得到地下巷道横截面拱顶沉降、侧墙位移的收敛变形信息。

    与现有技术相比,本发明的有益效果在于:

    (1)本发明结合光纤光栅抗干扰能力强、结构简单、体积小、易于植入各种材料内部而不影响材料特性,采用柔性带状结构可紧贴地下巷道内壁表面布设,对视场条件无要求,可实现隧道、矿道、坑道等地下巷道横截面变形从施工到运营期的长期、实时、在线监测预警;

    (2)集成光纤光栅优良的应变和温度传感器,具有温度补偿功能,可实现地下巷道变形的高精度监测;

    (3)采用多通道光纤光栅解调仪实现传感信号的解调,可沿地下巷道轴向不同位置处同时布设多条光纤式收敛计,构建大范围、分布式的地下巷道变形监测网络,与分布式光纤应变传感系统相比可以大幅降低成本、提高测试精度。

    附图说明

    图1为本发明的光纤式收敛计的结构示意图;

    图2为传输光缆粘贴在带状柔性基底表面的结构示意图;

    图3为传输光缆内嵌在保护层的结构示意图;

    图4为光纤式收敛计在地下巷道内部的安装布设示意图;

    图5为光纤光栅的原理示意图;

    图6为光纤光栅的输入光谱的曲线图;

    图7为光纤光栅的透射光谱的曲线图;

    图8为光纤光栅的反射光谱的待测量激起波长变化的曲线图;

    图9为基于fbg的曲率传感器弯曲机制微结构单元示意图;

    图10为基于fbg的曲率传感器弯曲机制微结构单元的弯曲变形示意图;

    图11为二维平面曲线拟合示意图;

    图中:1、带状柔性基底,2、保护层,3、传输光缆,31-3n、光纤光栅阵列,4、光纤光栅解调仪,5、地下巷道,6、光纤式收敛计。

    具体实施方式

    以下结合附图对本发明的具体实施方式做进一步的详细说明,本发明附图仅用于示例性说明,不能理解为对本发明的限制,为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。

    如图1、图2、图3、图4所示,一种光纤式收敛计,包括带状柔性基底1、保护层3、传输光缆3、光纤光栅阵列31-3n和光纤光栅解调仪4,所述的带状柔性基底1与保护层2固定在一起,所述的带状柔性基底1材质为钢材、pvc或形状记忆合金,保护层2的材质为环氧树脂胶、硅胶或硫化橡胶;所述的传输光缆3设置在带状柔性基底1的表面上或内嵌在保护层2内部,传输光缆3的一端伸出保护层2与光纤光栅解调仪4连接;所述的光纤光栅阵列31-3n由刻蚀在传输光缆3内部光纤上的多个光纤光栅构成,光纤光栅可以为等间隔布设,也可以根据实际测试需求定制不同间距,光纤光栅阵列31-3n由不同中心波长的高反射率光纤光栅构成,或由同一中心波长的低反射率弱光栅构成,光纤光栅阵列中至少有一个光纤光栅用于进行温度传感,并用于补偿其余光纤光栅用作应变测量时的温度影响;所述的光纤光栅解调仪4实时解调光纤光栅阵列31-3n中每一个光纤光栅的中心波长变化值。

    所述的光纤式收敛计的使用方法,包括如下步骤:

    s1:将光纤式收敛计6紧贴地下巷道5的内壁安装,绕地下巷道5的横截面内壁近一周;

    s2:将传输光缆3的一端接入光纤光栅解调仪4上,通过光纤光栅解调仪4实时监测光纤光栅的中心波长变化值;

    s3:根据预先标定的光纤光栅波长变化量和曲率之间的比例关系,将光栅的波长变化量转换为光纤光栅所在部位的收敛计曲率值;

    s4:由光纤式收敛计6上收集的各光纤光栅的位置信息及其曲率值通过二维曲线重建算法构建出光纤式收敛计6的二维形状,即地下巷道5的横截面内壁的变形曲线,得到地下巷道5横截面的收敛变形情况,如拱顶沉降、侧墙位移等信息。

    该光纤式收敛计6监测地下巷道5的横截面变形的测量原理如下:

    光纤布拉格光栅(fbg,fiberbragggrating)是一种光纤无源器件,它是利用掺杂(如锗、磷等)光纤的光敏性,通过某种工艺方法使外界入射光子和纤芯内的掺杂离子相互作用导致纤芯折射率沿光纤轴向周期性的永久变化,在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的反射滤波器或反射镜,只有满足光栅布拉格条件即式(1)的光波才能被反射,如图5、图6、图7、图8所示:

    λb=2neffλ(1)

    其中λb是光栅的中心波长也即布拉格波长,neff是光纤纤芯的有效折射率,λ是光栅周期。

    由(1)式可知,光纤光栅的bragg波长取决于光栅周期λ和有效折射率neff,任何使这两个参量发生改变的物理过程都将引起光栅bragg波长的移动,当被测量引起传感光栅的应力状态发生变化时,将导致neff或λ的变化,从而产生传感光栅相应的中心反射波长偏移,偏移量由式(2)确定,即:

    δλb=2δneff·λ 2neff·δλ(2)

    在不考虑温度影响的情况下,当光纤光栅在均匀轴向应变作用下,通过对弹光效应和应变效应引起的bragg中心波长偏移的分析,可得到光纤光栅纵向应变灵敏度表达式为:

    式中,p11、p12为弹光常数,即纵向应变所导致的纵向和横向折射率变化。

    (3)式可进一步简化为:

    其中pe为有效弹光系数,约为0.216。根据(4)式通过实时光纤光栅监测中心反射波长偏移情况,即可获得光栅所受轴向应变的变化情况。

    所述的光纤式收敛计6采用带状结构,在实际使用时只有因弯曲导致的材料形变,不考虑扭曲等情况,因此将该光纤式收敛计6变形测量简化为二维平面曲线形状传感问题;选取收敛计上一段长度为l、厚度为2h的微结构单元,如图9、图10所示,设该微结构单元符合理想变形条件,假设该微结构单元弯曲变形的曲率半径为r,对应的圆心角为θ;在柔性弯曲变形区内,结构微元弯曲内侧受压缩作用而缩短,长度变为l-δl,应力状态是单向受压,而外侧受拉作用伸长,长度变为l δl;在缩短和伸长的两个变形区中间有一层的长度始终不变,即应变量为零,称之为应变中性层,其长度保持l不变,根据材料力学公式,在纯弯曲条件下,则有:

    l=r·θ(5)

    l δl=(r h)·θ(6)

    l-δl=(r-h)·θ(7)

    求解上述(5)-(8)式可得

    式中c为微结构单元弯曲曲率,将fbg粘贴于微结构单元的上表面(fbg1)或下表面(fbg2),结合(4)和(9)式可得:

    对于任一确定的fbg,λb、pe、h均为常量,因此曲率c与fbg中心波长变化量偏移量呈线性关系,式(10)可进一步改写为:

    c=k·δλb(11)

    式中k为曲率变化对fbg波长变化量的灵敏度,可通过实验标定测得;依据(11)式即可实现光纤式收敛计6上各fbg处的弯曲曲率传感。

    所述的光纤式收敛计6采用带状结构,沿地下巷道5横截面内壁铺设一周,可认为光纤式收敛计6只在巷道横截面内弯曲变形,且不存在扭曲的情形,因此只考虑根据离散曲率信息进行二维平面曲线重建算法的研究,任取收敛计上一段曲线如图11所示,

    图中qn、qn 1分别为曲线上的两点,sn为两点之间的弧长,θn、θn 1分别为两点切线与x轴正向的夹角,即切线方向角。当已知qn点的坐标值和弧长sn后,就可以递推出qn 1的坐标值,然后利用该方法重建出整条曲线。曲线的拟合递推方程建立过程如下:

    根据已知条件,因为qn、qn 1之间是一条圆弧,因此qn和qn 1处的两条切线和两点连线的交角是相等的,则有qn到qn 1的向量为:

    式中为曲线在qn处的切线向量,为曲线在qn 1处的切线向量。

    qn和qn 1之间的弦长ln为:

    ln=2×sn×sin(γ/2)/γ(13)

    式中γ为的夹角,其计算公式为:

    γ=|θn 1-θn|(14)

    根据几何关系运算可知,γ与该圆弧段对应的圆弧角相等,因此有:

    则有:

    据此可以得到第n 1个点相对于第n个点的坐标位置,即根据第n个点的坐标位置来递推第n 1个点的位置的坐标,递推公式如下:

    已知光纤式收敛计6上各点fbg位置信息,结合(12)式可得到对应段的圆弧角θ后,给定初始条件:第一个点坐标q0(x0,y0)和对应的切线方向角θ0后,可根据(17)式结合样条插值等方法就可重建出整条光纤式收敛计6的二维形状曲线,即地下巷道5横截面内壁的变形曲线,由此得到地下巷道5横截面的收敛变形情况,如拱顶沉降、侧墙位移等信息;当结构发生变形时,对应的fbg波长也将发生变化,基于上述曲线形状重建方法,即可实现地下巷道5的断面变形的连续、实时、在线监测。

    本发明未详述部分为现有技术,显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。


    技术特征:

    1.一种光纤式收敛计及其使用方法,其特征是:光纤式收敛计包括带状柔性基底(1)、保护层(2)、传输光缆(3)、光纤光栅阵列(31-3n)和光纤光栅解调仪(4);所述的带状柔性基底(1)与保护层(2)固定在一起;所述的传输光缆(3)设置在带状柔性基底(1)的表面上或内嵌在保护层(2)内部,传输光缆(3)的一端伸出保护层(2)与光纤光栅解调仪(4)连接;所述的光纤光栅阵列(31-3n)由刻蚀在传输光缆(3)内部光纤上的多个光纤光栅构成;所述的光纤光栅解调仪(4)实时解调光纤光栅阵列(31-3n)中每一个光纤光栅的中心波长变化值。

    2.根据权利要求1所述的一种光纤式收敛计,其特征是:所述的光纤光栅阵列(31-3n)上的光纤光栅为等间隔布设。

    3.根据权利要求1所述的一种光纤式收敛计,其特征是:所述的光纤光栅阵列(31-3n)由不同中心波长的高反射率光纤光栅构成,或由同一中心波长的低反射率弱光纤光栅构成。

    4.根据权利要求1所述的一种光纤式收敛计,其特征是:所述的光纤光栅阵列(31-3n)中有大于一个光纤光栅用来进行温度传感,并用于补偿其余光纤光栅用作应变测量时的温度影响。

    5.根据权利要求1所述的一种光纤式收敛计,所述的带状柔性基底(1)的材质为钢材、pvc或形状记忆合金。

    6.根据权利要求1所述的一种光纤式收敛计,其特征是:所述的保护层(2)的材质为环氧树脂胶、硅胶或硫化橡胶。

    7.一种如权利要求1-6其中之一所述的光纤式收敛计的使用方法,其特征是:包括如下步骤:

    s1:将光纤式收敛计(6)紧贴地下巷道(5)内壁安装,绕地下巷道(5)横截面内壁近一周;

    s2:将传输光缆(3)的一端接入光纤光栅解调仪(4),通过光纤光栅解调仪(4)实时监测光纤光栅的中心波长变化值;

    s3:根据预先标定的光纤光栅波长变化量和曲率之间的比例关系,将光栅的波长变化量转换为光纤光栅所在部位的收敛计曲率值;

    s4:由光纤式收敛计(6)上收集的各光纤光栅的位置信息及其曲率值通过二维曲线重建算法构建出光纤式收敛计(6)的二维形状,即地下巷道(5)横截面内壁的变形曲线,得到地下巷道(5)横截面拱顶沉降、侧墙位移的收敛变形信息。

    技术总结
    本发明公开了一种光纤式收敛计及使用方法,光纤式收敛计包括带状柔性基底、保护层、传输光缆、光纤光栅阵列和光纤光栅解调仪,所述的传输光缆粘贴在带状柔性基底的表面上或内嵌在保护层内部,其一端与光纤光栅解调仪连接;光纤光栅阵列由刻蚀在传输光缆内部光纤上的多个光纤光栅构成,沿长度方向设置在传输光缆上;该光纤式收敛计通过实时监测各光纤光栅的中心波长变化值,将波长变化量转换为收敛计曲率值,通过二维曲线重建光纤收敛计的二维形状,即为巷道横截面内壁的变形曲线,本发明结合光纤光栅抗干扰能力强的特点,结构简单、体积小、易植入各种材料内部,实现地下巷道横截面变形信息的长期、实时在线监测。

    技术研发人员:周会娟;余尚江;陈晋央;郭士旭;孟晓洁;陈显
    受保护的技术使用者:中国人民解放军军事科学院国防工程研究院工程防护研究所
    技术研发日:2020.11.16
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-7270.html

    最新回复(0)