本发明涉及电液伺服控制领域,特别是涉及一种机器人阀控缸驱动器自适应反馈线性化控制方法及系统。
背景技术:
液压驱动系统具备功重比大、承载能力强、响应快等优点,广泛应用于各行各业中,在国民经济中起着重要作用。目前,重载机器人通常采用液压驱动,常见液压机器人(包括机械臂和足式机器人等)的关节驱动器为高集成性阀控缸结构,该结构的应用有利于减小机器人安装体积和重量,并可提高系统固有频率。机器人关节阀控缸驱动器的控制精度和性能,直接影响机器人末端运动精度和动态性能,如装配机械臂的精确定位和安装、足式机器人的稳定行走和瞬时反应。因此,机器人关节阀控缸驱动器的控制性能,对机器人整机而言至关重要。
机器人关节阀控缸驱动器的液压系统,属于高阶非线性参数时变系统,其参数会随系统温度、负载等因素变化而改变,若控制方法不能适应这些参数的变化,将会影响系统的控制性能。自适应控制能根据参数变化而自动调节反馈控制律,具有较好的鲁棒性,但当系统存在未建模动态或随机扰动时,控制系统的稳定性难以被证明;扩张状态观测器是自抗扰控制中的核心组件,其可不依赖系统模型对系统的总扰动进行观测,但该观测器受传感器噪声影响较大,且传统连续非光滑的非线性误差函数易导致系统颤振。
技术实现要素:
本发明的目的是提供一种机器人阀控缸驱动器自适应反馈线性化控制方法及系统,在降低扰动对系统稳定性影响的同时,提升系统对参数微变的自适应能力,从而提升机器人关节驱动器的控制性能。
为实现上述目的,本发明提供了如下方案:
一种机器人阀控缸驱动器自适应反馈线性化控制方法,包括:
根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式;
基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;
根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器;
基于所述非线性扩张状态观测器得到系统总扰动;
基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式;
基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;
基于所述控制律对机器人关节阀控缸驱动器进行控制。
可选的,所述根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式,具体包括:
根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式为:
式中,[x1x2x3]t为系统状态变量,x1为系统位移,x2为系统速度,x3为系统加速度,a1、a2和a3为系统状态系数,b0为系统输入系数,w为系统扰动,u为系统整体控制律,y为系统输出位移。
可选的,所述基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数,具体包括:
基于非线性误差函数和多项式函数,确定连续光滑的非线性误差函数的表达式为:
式中,c1、c2、c3、c4、c5和c6为pol函数的系数,且由α和δ组成;α为pow函数的指数;δ为误差阈值;ε为观测器位移误差;
根据所述连续光滑的非线性误差函数的连续性和光滑性要求,确定pol函数满足的边界条件为:
根据所述pol函数满足的边界条件,求解得到所述pol函数的系数为:
根据所述pol函数的系数,确定所述连续光滑的非线性误差函数。
可选的,所述根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器,具体包括:
根据所述状态空间表达式,确定机器人关节阀控缸驱动器系统的初始非线性扩张状态观测器为:
式中,
采用所述连续光滑的非线性误差函数,对所述初始非线性扩张状态观测器进行调整,得到调整后的非线性扩张状态观测器为:
可选的,所述基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式,具体包括:
利用反馈机制消除所述系统总扰动,得到系统整体控制律为:
其中,d为所述系统总扰动,u′为自适应反馈线性化控制律;
根据所述状态空间表达式和所述系统整体控制律,确定不包含扰动的系统状态空间表达式为:
可选的,所述基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律,具体包括:
基于系统状态系数a1、a2和a3随时间的变化量和所述更新后的系统状态空间表达式,确定基于变化量的系统状态空间表达式为:
其中,ai随时间的变化量为δai,且满足
基于条件
其中,
式中,
根据求解得到的系统自适应反馈线性化控制律,确定机器人关节阀控缸驱动器系统整体控制律为:
式中,e1、e2、e3分别为与系统位移、速度和加速相关的偏差,k3为系统自适应反馈线性化控制律中与系统加速度相关的参数,x1d为系统期望输入。
本发明还提供一种机器人阀控缸驱动器自适应反馈线性化控制系统,包括:
状态空间表达式建立模块,用于根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式;
非线性误差函数获取模块,用于基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;
非线性扩张状态观测器获取模块,用于根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器;
系统总扰动获取模块,用于基于所述非线性扩张状态观测器得到系统总扰动;
系统状态空间表达式更新模块,用于基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式;
控制律确定模块,用于基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;
控制模块,用于基于所述控制律对机器人关节阀控缸驱动器进行控制。
可选的,所述非线性扩张状态观测器获取模块,具体包括:
初始非线性扩张状态观测器确定单元,用于根据所述状态空间表达式,确定机器人关节阀控缸驱动器系统的初始非线性扩张状态观测器为:
式中,
非线性扩张状态观测器调整单元,用于采用所述连续光滑的非线性误差函数,对所述初始非线性扩张状态观测器进行调整,得到调整后的非线性扩张状态观测器为:
可选的,所述系统状态空间表达式更新模块,具体包括:
整体控制律确定单元,用于利用反馈机制消除所述系统总扰动,得到系统整体控制律为:
其中,d为所述系统总扰动,u′为自适应反馈线性化控制律;
系统状态空间表达式更新单元,用于根据所述状态空间表达式和所述系统整体控制律,确定不包含扰动的系统状态空间表达式为:
可选的,所述控制律确定模块,具体包括:
基于变化量的系统状态空间表达式确定单元,用于基于系统状态系数a1、a2和a3随时间的变化量和所述更新后的系统状态空间表达式,确定基于变化量的系统状态空间表达式为:
其中,ai随时间的变化量为δai,且满足
求解单元,用于基于条件
其中,
式中,
控制律确定单元,用于根据求解得到的系统自适应反馈线性化控制律,确定机器人关节阀控缸驱动器系统整体控制律为:
式中,e1、e2、e3分别为与系统位移、速度和加速相关的偏差,k3为系统自适应反馈线性化控制律中与系统加速度相关的参数,x1d为系统期望输入。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明采用反步法和李雅普诺夫稳定性理论,提供一种机器人关节阀控缸驱动器的自适应反馈线性化控制方法及系统,可自适应系统参数的微变,在设计过程中引入非线性扩张状态观测器,观测系统的总扰动,减小了系统总扰动(未建模动态和随机扰动)对系统稳定性的影响;针对非线性扩张状态观测器,设计了连续光滑的非线性误差函数,并保留了系统已知结构,降低了系统高频颤振的可能性,降低了传感器噪声的影响,形成调整后的非线性扩张状态观测器。本发明形成的基于调整后的非线性扩张状态观测器的机器人关节阀控缸自适应反馈线性化控制,可提高液压机器人关节控制精度和动态性能,优化液压机器人整机的控制效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明机器人阀控缸驱动器自适应反馈线性化控制方法的流程示意图;
图2为本发明传统非线性误差函数fal和连续光滑的非线性误差函数polfal对比图;
图3为本发明传统非线性误差函数fal和连续光滑的非线性误差函数polfal的导数对比图;
图4为本发明机器人阀控缸驱动器自适应反馈线性化控制系统的结构示意图;
图5为系统期望输入为
图6为系统期望输入为
图7为系统期望输入为
图8为系统期望输入为
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明机器人阀控缸驱动器自适应反馈线性化控制方法的流程示意图。如图1所示,本发明机器人阀控缸驱动器自适应反馈线性化控制方法包括以下步骤:
步骤100:根据机器人关节阀控缸驱动器系统数学模型,建立机器人关节阀控缸驱动器系统的状态空间表达式。具体过程如下:
step1:根据机器人关节阀控缸驱动器系统数学模型,选取系统的状态变量为
其中
式(1)中,x1为系统位移,x2为系统速度,x3为系统加速度,ai(i=1,2,3)为系统状态系数,b0为系统输入系数,w为系统扰动,u为整体控制律,y为系统输出位移,xp为系统输出,mt为负载等效至活塞杆上的质量,bp为负载阻尼,k为负载刚度,a1为液压缸无杆腔面积,a2为液压缸有杆腔面积,v1为液压缸无杆腔至伺服阀容积体积,v2为液压缸有杆腔至伺服阀容积体积,βe为液压油弹性模量,kaxv为伺服阀及放大器增益系数,k1和k2为伺服阀流量系数,fl为系统负载力,ff为系统摩擦力,δw为系统未建模扰动。其中,ai(i=1,2,3)、b0和w会受系统温度、负载等因素而变化。
步骤200:基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数。具体过程如下:
step1:根据传统非线性误差函数和多项式函数,设计连续光滑的非线性误差函数为:
式(2)中,ci(i=1,2,3,4,5,6)为pol函数的系数,且由α和δ组成。α为pow函数的指数;δ为误差阈值;ε为观测器位移误差;
传统非线性误差函数为:
step2:根据连续光滑的非线性误差函数的连续性和光滑性要求,pol函数需满足的边界条件为:
step3:根据式(4),计算pol函数的系数为:
设定-0.5≤ε≤0.5,α=0.25,δ=0.1,对传统非线性误差函数fal和连续光滑的非线性误差函数polfal进行对比,图2所示为本发明两函数的对比曲线,图3所示为本发明两函数导数的对比曲线。根据图2和图3可知,fal函数虽然连续,但在分段处不光滑,即fal函数导数不连续;polfal函数连续且光滑,即polfal函数导数连续,该函数能在系统状态量趋近平衡点的过程中,减小系统颤振机率,改善系统稳定性。
步骤300:根据状态空间表达式和连续光滑的非线性误差函数,获取机器人关节阀控缸驱动器系统的非线性扩张状态观测器。具体过程如下:
step1:设系统真实的输入系数为b,则系统总扰动为:
d=(b-b0)u w(6)
令x4=d,f=a1x1 a2x2 a3x3,设计机器人关节阀控缸驱动器系统的非线性扩张状态观测器为:
式(6)-(7)中,
step2:根据所述连续光滑的非线性误差函数,在初始非线性扩张状态观测器的基础上,设计调整后的非线性扩张状态观测器为:
步骤400:基于非线性扩张状态观测器得到系统总扰动。根据所述调整后的非线性扩张状态观测器,观测系统总扰动为:
步骤500:基于状态空间表达式,利用反馈机制消除系统总扰动,得到更新后的系统状态空间表达式。具体的,首先利用反馈机制消除所述系统总扰动,设系统整体控制律为:
然后,根据所述系统的状态空间表达式和系统整体控制律,获得不包含总扰动的系统状态空间表达式为:
步骤600:基于更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律。具体过程如下:
step1:设ai(i=1,2,3)随时间的变化量为δai(i=1,2,3),且满足
step2:设
step3:式(13)中,e1为系统偏差,x1d为系统期望输入,
step4:系统的控制目标1为,x1趋近于x1d,即
e1=x1d-x1=0(15)
设李雅普诺夫函数1为
由式(16)可知,v1正定,并根据李雅普诺夫稳定性定理可知,式(16)的导数式(17)负定
step5:根据式(17),若令
e2=x2d-x2=0(18)
设李雅普诺夫函数2为
由式(19)可知,v2正定,并根据李雅普诺夫稳定性定理可知,式(19)的导数式(20)负定
step6:根据式(20),若令
e3=x3d-x3=0(21)
设李雅普诺夫函数3为
由式(22)可知,v3正定,并根据李雅普诺夫稳定性定理可知,式(22)的导数式(23)负定
step7:根据式(23),若令
根据式(23)-(24),有
因为
step8:根据式(10)(24)和(26)可知,机器人关节阀控缸驱动器系统整体控制律为
步骤700:基于控制律对机器人关节阀控缸驱动器进行控制。
图4为本发明机器人阀控缸驱动器自适应反馈线性化控制系统的结构示意图。如图4所示,本发明机器人阀控缸驱动器自适应反馈线性化控制系统包括:
状态空间表达式建立模块401,用于根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式。
非线性误差函数获取模块402,用于基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数。
非线性扩张状态观测器获取模块403,用于根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器。
系统总扰动获取模块404,用于基于所述非线性扩张状态观测器得到系统总扰动。
系统状态空间表达式更新模块405,用于基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式。
控制律确定模块406,用于基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律。
控制模块407,用于基于所述控制律对机器人关节阀控缸驱动器进行控制。
作为具体实施例,本发明的机器人阀控缸驱动器自适应反馈线性化控制系统中,所述非线性扩张状态观测器获取模块403,具体包括:
初始非线性扩张状态观测器确定单元,用于根据所述状态空间表达式,确定机器人关节阀控缸驱动器系统的初始非线性扩张状态观测器为:
式中,
非线性扩张状态观测器调整单元,用于采用所述连续光滑的非线性误差函数,对所述初始非线性扩张状态观测器进行调整,得到调整后的非线性扩张状态观测器为:
作为具体实施例,本发明的机器人阀控缸驱动器自适应反馈线性化控制系统中,所述系统状态空间表达式更新模块405,具体包括:
整体控制律确定单元,用于利用反馈机制消除所述系统总扰动,得到系统整体控制律为:
其中,d为所述系统总扰动,u′为自适应反馈线性化控制律。
系统状态空间表达式更新单元,用于根据所述状态空间表达式和所述系统整体控制律,确定不包含扰动的系统状态空间表达式为:
作为具体实施例,本发明的机器人阀控缸驱动器自适应反馈线性化控制系统中,,所述控制律确定模块406,具体包括:
基于变化量的系统状态空间表达式确定单元,用于基于系统状态系数a1、a2和a3随时间的变化量和所述更新后的系统状态空间表达式,确定基于变化量的系统状态空间表达式为:
其中,ai随时间的变化量为δai,且满足
求解单元,用于基于条件
其中,
控制律确定单元,用于根据求解得到的系统自适应反馈线性化控制律,确定机器人关节阀控缸驱动器系统整体控制律为:
式中,e1、e2、e3分别为与系统位移、速度和加速相关的偏差,k3为系统自适应反馈线性化控制律中与系统加速度相关的参数,x1d为系统期望输入。
下面提供一个具体实施案例,进一步说明本发明的上述方案。
根据某机器人关节阀控缸驱动器基本参数和液压系统固有参数,设置本具体实施例的参数为a1=0,a2=-15763000,a3=-1538,b=4607800,并设这些参数变化范围为5%;本发明给定系统期望输入为
步骤1,根据式(1),获得机器人关节阀控缸驱动器系统的状态空间表达式;
步骤2,根据式(6)-(7),设计系统的非线性扩张状态观测器;
步骤3,根据式(2)-(5),设计连续光滑的非线性误差函数,并计算其参数;根据式(8),设计调整后的非线性扩张状态观测器;
步骤4,根据式(10)和式(11),获得不包含总扰动的系统状态空间表达式;
步骤5,根据式(10)、式(24)和式(26)-(27),获得基于调整后的非线性扩张状态观测器的机器人阀控缸驱动器自适应反馈线性化控制律。
通过以上步骤可获得本具体实施案例的基于调整后的非线性扩张状态观测器的机器人阀控缸驱动器自适应反馈线性化控制,图5-图8为本具体实施案例部分曲线图,具体说明如下:
由图5-图6可以看出,在采用pid控制和本发明控制过程中,系统的跟随误差均随着系统输入信号幅值和频率的增加而增大,且本发明控制对应的跟随误差明显小于pid控制,即本发明控制精度更高。
由图7-图8可以看出,本发明设计的调整后的非线性扩张状态观测器对机器人关节阀控缸驱动器系统的状态量具有较强的观测能力,可为自适应反馈线性化控制提供观测的系统状态量及系统总扰动。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
1.一种机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,包括:
根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式;
基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;
根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器;
基于所述非线性扩张状态观测器得到系统总扰动;
基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式;
基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;
基于所述控制律对机器人关节阀控缸驱动器进行控制。
2.根据权利要求1所述的机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,所述根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式,具体包括:
根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式为:
式中,[x1x2x3]t为系统状态变量,x1为系统位移,x2为系统速度,x3为系统加速度,a1、a2和a3为系统状态系数,b0为系统输入系数,w为系统扰动,u为整体控制律,y为系统输出位移。
3.根据权利要求2所述的机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,所述基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数,具体包括:
基于非线性误差函数和多项式函数,确定连续光滑的非线性误差函数的表达式为:
式中,c1、c2、c3、c4、c5和c6为pol函数的系数,且由α和δ组成;α为pow函数的指数;δ为误差阈值;ε为观测器位移误差;
根据所述连续光滑的非线性误差函数的连续性和光滑性要求,确定pol函数满足的边界条件为:
根据所述pol函数满足的边界条件,求解得到所述pol函数的系数为:
根据所述pol函数的系数,确定所述连续光滑的非线性误差函数。
4.根据权利要求3所述的机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,所述根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器,具体包括:
根据所述状态空间表达式,确定机器人关节阀控缸驱动器系统的初始非线性扩张状态观测器为:
式中,
采用所述连续光滑的非线性误差函数,对所述初始非线性扩张状态观测器进行调整,得到调整后的非线性扩张状态观测器为:
5.根据权利要求4所述的机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,所述基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式,具体包括:
利用反馈机制消除所述系统总扰动,得到系统整体控制律为:
其中,d为所述系统总扰动,u′为自适应反馈线性化控制律;
根据所述状态空间表达式和所述系统整体控制律,确定不包含扰动的系统状态空间表达式为:
6.根据权利要求5所述的机器人阀控缸驱动器自适应反馈线性化控制方法,其特征在于,所述基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律,具体包括:
基于系统状态系数a1、a2和a3随时间的变化量和所述更新后的系统状态空间表达式,确定基于变化量的系统状态空间表达式为:
其中,ai随时间的变化量为δai,且满足
基于条件
其中,
根据求解得到的系统自适应反馈线性化控制律,确定机器人关节阀控缸驱动器系统整体控制律为:
式中,e1、e2、e3分别为与系统位移、速度和加速相关的偏差,k3为系统自适应反馈线性化控制律中与系统加速度相关的参数,x1d为系统期望输入。
7.一种机器人阀控缸驱动器自适应反馈线性化控制系统,其特征在于,包括:
状态空间表达式建立模块,用于根据机器人关节阀控缸驱动器系统数学模型,建立所述机器人关节阀控缸驱动器系统的状态空间表达式;
非线性误差函数获取模块,用于基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;
非线性扩张状态观测器获取模块,用于根据所述状态空间表达式和所述连续光滑的非线性误差函数,获取所述机器人关节阀控缸驱动器系统的非线性扩张状态观测器;
系统总扰动获取模块,用于基于所述非线性扩张状态观测器得到系统总扰动;
系统状态空间表达式更新模块,用于基于所述状态空间表达式,利用反馈机制消除所述系统总扰动,得到更新后的系统状态空间表达式;
控制律确定模块,用于基于所述更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;
控制模块,用于基于所述控制律对机器人关节阀控缸驱动器进行控制。
8.根据权利要求7所述的机器人阀控缸驱动器自适应反馈线性化控制系统,其特征在于,所述非线性扩张状态观测器获取模块,具体包括:
初始非线性扩张状态观测器确定单元,用于根据所述状态空间表达式,确定机器人关节阀控缸驱动器系统的初始非线性扩张状态观测器为:
式中,
非线性扩张状态观测器调整单元,用于采用所述连续光滑的非线性误差函数,对所述初始非线性扩张状态观测器进行调整,得到调整后的非线性扩张状态观测器为:
9.根据权利要求8所述的机器人阀控缸驱动器自适应反馈线性化控制系统,其特征在于,所述系统状态空间表达式更新模块,具体包括:
整体控制律确定单元,用于利用反馈机制消除所述系统总扰动,得到系统整体控制律为:
其中,d为所述系统总扰动,u′为自适应反馈线性化控制律;
系统状态空间表达式更新单元,用于根据所述状态空间表达式和所述系统整体控制律,确定不包含扰动的系统状态空间表达式为:
10.根据权利要求9所述的机器人阀控缸驱动器自适应反馈线性化控制系统,其特征在于,所述控制律确定模块,具体包括:
基于变化量的系统状态空间表达式确定单元,用于基于系统状态系数a1、a2和a3随时间的变化量和所述更新后的系统状态空间表达式,确定基于变化量的系统状态空间表达式为:
其中,ai随时间的变化量为δai,且满足
求解单元,用于基于条件
其中,
控制律确定单元,用于根据求解得到的系统自适应反馈线性化控制律,确定机器人关节阀控缸驱动器系统整体控制律为:
式中,e1、e2、e3分别为与系统位移、速度和加速相关的偏差,k3为系统自适应反馈线性化控制律中与系统加速度相关的参数,x1d为系统期望输入。
技术总结