本发明涉及一种用于能预见地控制车辆的驱动系统的冷却剂泵的方法,其中,冷却剂泵经由电动驱动装置运行以使冷却剂循环,电动驱动装置借助功率电子设备操控。
背景技术:
车辆中的驱动系统在中等功率(>50kw)至大功率(300kw)情况下通过液态的冷却剂进行冷却。所需的冷却剂流量和冷却剂压力通过电驱动的泵产生。泵功率通常由车辆制造商以泵特性曲线的形式预先给定。此外,泵功率与冷却剂的温度或冷却剂的与温度相关的粘度有关。由于根据温度或压力控制冷却剂泵,冷却剂泵的负荷显著高于所需的负荷。
技术实现要素:
本发明的目的是,提供一种用于能预见地控制冷却剂泵的方法,其中功率电子设备的反相器的热负荷被改变。
根据本发明,该目的通过以下方式实现,即,通过功率电子设备的与使用寿命相关的临界温度控制由冷却剂泵输送的冷却剂体积流。这具有的优点是,与冷却剂泵的功率参数、如体积流和压力无关地控制冷却剂泵。虽然通过控制会使冷却剂泵比功率电子设备更快速地老化,其使用寿命被预测性地确定。但是因为冷却剂泵比功率电子设备成本更有利,相比功率电子设备的更换,冷却剂泵的提前更换降低了维护耗费。
有利地,根据实时的车辆行驶特性确定功率电子设备的余留使用寿命,其中,确定在实时探测到的功率电子设备温度和功率电子设备在标准行驶特性下的温度之间的温度差,并且由该温度差推导出需要通过冷却剂泵重新设定的冷却剂体积流。通过研究实时的车辆行驶特性可特别精确地预测其对功率电子设备的使用寿命的影响。
在一种设计方案中,实时探测到的功率电子设备的温度由功率电子设备的损耗功率计算得出。因为该损耗功率能简单地由功率电子设备的特征曲线或由在线计算得出,由此能够成本有利地确定温度。
在一种变型方案中,实时的车辆行驶特性确定为在预先给定的行驶时间段上的车辆负荷特性,其中,预先给定的行驶时间段如此选择,使得得出足够数量的行驶信息以确定功率电子设备的余留使用寿命。在此,负荷特性被视为当前行驶车辆的驾驶员的驾驶行为。因为不同驾驶员的驾驶行为会截然不同,所以能够通过分别以当前的驾驶风格为基础来高度精确地确定对冷却剂泵的操控。
在一种实施方式中,标准行驶特性相应于车辆的部分负荷行驶特性。有利地,可使用由车辆制造商预设的行驶特性作为标准行驶特性。
有利地,在实时的车辆行驶特性期间连续地进行功率电子设备的功率损耗计算、和/或功率电子设备的温度计算、和/或温度差的确定。由此始终为该方法提供实时参数以确定能预见的功率电子设备使用寿命。
在另一设计方案中,温度差的数量的确定借助统计算法、优选雨流算法进行。因此使用简单的已知算法。
在一种改进方案中,根据功率电子设备的得出的余留使用寿命设定新的行驶特性并且降低冷却剂泵的体积流。因此能在取消参数,如冷却剂泵的温度和压力的情况下预测性地控制冷却剂泵。
附图说明
本发明具有多种实施方式。根据在图纸中示出的附图详细阐述其中一种实施方式。
其中示出:
图1示出了具有电机的车辆的驱动系的原理性示意图,
图2示出了根据本发明的方法的实施例,
图3示出了功率电子设备的使用寿命特征曲线的示意图,
图4示出了车辆的多个不同行驶特性的示例性的示意图。
具体实施方式
在图1中示出了混合动力车辆的示例性的驱动系的原理性示意图。驱动系1包括内燃机2和电动机3。在内燃机2和电动机3之间,紧接在内燃机2之后布置混合动力分离离合器4。内燃机2和混合动力分离离合器4经由曲轴5彼此连接。电动机3具有能转动的转子6和固定不动的定子7。混合动力分离离合器4的从动轴8与变速器9连接,变速器包含未详细示出的耦合元件、例如第二离合器或变扭器,第二离合器或变扭器布置在电动机3和变速器9之间。变速器9将由内燃机2和/或电动机3产生的扭矩传递到混合动力车辆的驱动轮10上。电动机3和内燃机2通过驱动机控制器11操控。
布置在内燃机2和电动机3之间的混合动力分离离合器4接合,以便在混合动力车辆行驶期间以电动机3产生的扭矩起动内燃机2或在助推运行期间以被驱动的内燃机2和电动机3行驶。但是也可通过断开混合动力分离离合器4仅以电动机3进行纯电动行驶。在这种驱动系统1中通过功率放大器12操控电动机3。
电动机3通过冷却剂回路13冷却,在冷却剂回路中通过冷却剂泵14使冷却剂循环,冷却剂泵由另一电动机15驱动。为了操控另一电动机15设置功率电子设备16,功率电子设备包括微处理器17。
微处理器17包括用于预测性地控制冷却剂泵14的算法,如在图2中所示。在第一方框100中,经由行驶循环工况得出实时的车辆行驶特性,在方框200中从实时的车辆行驶特性中测量在另一电动机15操控冷却泵14时的相电流。在方框300中,由相电流进行功率电子设备16的损耗计算。在方框400中,从该损耗计算中得出功率电子设备16的温度。在方框500中,借助雨流算法得出在功率电子设备16上实时测得的温度和与车辆的部分负荷状态相应的标准温度tkrit之间的温度差δt。在方框300至500中的计算在线连续地运行。在方框600中,由该温度差δt计算功率电子设备16的余留使用寿命。该计算是取关于预设的行驶时间段或预设的车辆经过距离的平均值。在方框700中,根据在方框600中得出的使用寿命例如借助简单的比较器设定未来的行驶特性并且设定体积流以控制冷却剂泵14。
在图3中示出了功率电子设备16的允许的温度变化循环的次数随温度差δt的变化。区域a示出了低的温度差δt,该低的温度差使得冷却剂泵14的体积流降低。在区域b中示出了中等的温度差δt,在达到中等的温度差时体积流保持不变。与此相对,在区域c中示出了高的温度差δt,高的温度差使得冷却剂泵的体积流提高。
在图4中示出了车辆的多个不同行驶特性的示意图,其中示出了功率电子设备16的半导体结构元件的结点温度t随时间t的变化。曲线d示出了在低负荷特性中的走向,而曲线e示出了功率电子设备16在部分负荷特性中的温度,并且曲线f示出了在全负荷特性中的温度。箭头g指向低负荷特性,低负荷特性相应于相对于部分负荷特性和全负荷特性的小的温度差δt。即,在此设定冷却剂泵14的稍微较低的流量。箭头h也指向低负荷特性,但是该低负荷特性相应于相对于部分负荷特性和全负荷特性的中间的温度差。在此,可在冷却水泵14上设定低流量。在箭头k的区域中,低负荷特性相应于相对于部分负荷特性和全负荷特性的高的温度差δt,其中设定显著更低的流量。
在全负荷行驶特性中,功率电子设备16的部件经受严重热负荷。在此,将冷却剂泵14快速地调节到较高的体积流或可能必须输送持续较高的体积流。这使得尽管热负荷高,但是功率电子设备达到车辆制造商的使用寿命要求。
在部分负荷行驶特性或低负荷行驶特性中,功率电子设备16的部件经受较小的热负荷,由此使冷却剂泵14显著较慢地调节到较高的体积流或持续地调节到冷却剂泵14的低体积流。因为功率电子设备16的热负荷显著更低,因此功率电子设备的使用寿命显著高于所需,冷却剂泵14还能显著更长时间地保持调节在低的体积流上。借助该方法,能有针对性地缩短冷却剂泵14的使用寿命并且缩短功率电子设备16的使用寿命或根据车辆制造商的使用寿命要求使得冷却剂泵的使用寿命和功率电子设备的使用寿命减小。
附图标记列表
1驱动系
2内燃机
3电动机
4混合动力分离离合器
5曲轴
6转子
7定子
8从动轴
9变速器
10驱动轮
11驱动机控制器
12功率放大器
13冷却剂回路
14冷却剂泵
15另一电动机
16功率电子设备
17微处理器
1.用于能预见地控制车辆的驱动系统的冷却剂泵的方法,其中,所述冷却剂泵(14)经由电动驱动装置(15)运行以使冷却剂循环,所述电动驱动装置借助功率电子设备(16)操控,其特征在于,通过所述功率电子设备(16)的与使用寿命相关的临界温度(tkrit)控制由所述冷却剂泵(14)输送的冷却剂体积流。
2.根据权利要求1所述的方法,其特征在于,根据实时的车辆行驶特性确定所述功率电子设备(16)的余留使用寿命,其中,确定在实时探测到的所述功率电子设备(16)的温度和标准行驶特性的温度(tkrit)之间的温度差(δt),并且由所述温度差(δt)推导出需要通过所述冷却剂泵(14)重新设定的冷却剂体积流。
3.根据权利要求2所述的方法,其特征在于,实时探测到的所述功率电子设备(16)的温度由所述功率电子设备(16)的损耗功率计算得出。
4.根据权利要求2或3所述的方法,其特征在于,所述实时的车辆行驶特性确定为在预先给定的行驶时间段上的车辆负荷特性,其中,所述预先给定的行驶时间段如此选择,使得得出足够数量的关于所述实时的车辆行驶特性的信息以确定所述功率电子设备(16)的余留使用寿命。
5.根据前述权利要求中至少一项所述的方法,其特征在于,所述标准行驶特性相应于所述车辆的部分负荷行驶特性。
6.根据前述权利要求中至少一项所述的方法,其特征在于,在所述实时的车辆行驶特性期间连续地进行所述功率电子设备(16)的损耗功率计算、和/或所述功率电子设备(16)的温度计算、和/或所述温度差(δt)的确定。
7.根据前述权利要求中至少一项所述的方法,其特征在于,所述温度差(δt)的确定借助统计算法、优选雨流算法进行。
8.根据前述权利要求中至少一项所述的方法,其特征在于,根据所述功率电子设备(16)的得出的余留使用寿命设定行驶特性并且降低所述冷却剂泵(14)的冷却剂体积流。
技术总结