电源装置的制作方法

    专利2022-07-07  145


    本发明涉及电源装置。



    背景技术:

    专利文献1所记载的设置于电动车辆的电力转换装置构成为将电动发电机驱动用的逆变器兼用作作为充电器的功能的一部分。由此,能够将用于使用作为外部充电器的单相ac(alternatingcurrent:交流)充电器对作为蓄电池的电池进行充电的车载部件抑制为最小限度,从而能够降低电动车辆的重量和价格。

    另外,在专利文献1中,公开了如下技术:在通过单相ac充电器对电池进行充电时,控制逆变器的各开关元件的导通和截止的切换,以使从单相ac充电器向电动发电机供给的电压为正,从电池向电动发电机供给的电压为负。

    现有技术文献

    专利文献

    专利文献1:日本特开2007-252074号公报



    技术实现要素:

    发明所要解决的课题

    但是,专利文献1所公开的技术是使用单相ac充电器对电池进行充电的单相ac充电用的技术,因此为了用于使用三相ac充电器对电池进行充电的三相ac充电,另外需要将从三相ac充电器输出的三相ac电压转换为dc(directcurrent:直流)电压的转换电路。

    本发明是鉴于上述课题而完成的,其目的在于提供一种电源装置,不另外设置将从三相充电器输出的三相ac电压转换为dc电压的转换电路,就能够通过三相ac充电器对蓄电池进行充电。

    用于解决课题的技术方案

    为了解决上述课题并实现目的,本发明所涉及的电源装置具备:蓄电池;在所述蓄电池的正极侧端子与负极侧端子之间串联连接有第一电容器及第二电容器的电容器部;及电力转换器,在该电力转换器中,能够将三电平的电压输出到电动发电机的三电平逆变器以u相、v相和w相这三相与所述蓄电池并联连接,该三电平逆变器由串联连接的第一开关元件、第二开关元件、第三开关元件和第四开关元件、第一二极管以及第二二极管构成,并使所述第一开关元件、所述第二开关元件、所述第三开关元件和所述第四开关元件导通/截止,所述第一二极管将所述第一开关元件和所述第二开关元件之间与所述第一电容器和所述第二电容器之间连接,所述第二二极管将所述第三开关元件和所述第四开关元件之间与所述第一电容器和所述第二电容器之间连接,所述电源装置的特征在于,具备:3个连接端子,在三相的所述三电平逆变器各自的所述第一开关元件与所述第二开关元件之间或者所述第三开关元件与所述第四开关元件之间当中的至少一方,能够与三相ac充电器的3个端子电连接;及控制装置,如下进行控制,即,在三相的所述三电平逆变器各自的所述第一开关元件与所述第二开关元件之间,所述3个连接端子与所述三相ac充电器的3个端子电连接的情况下,在通过所述三相ac充电器对所述蓄电池进行充电之前,通过所述蓄电池对所述第一电容器进行充电,并使所述第二电容器的电压为0[v],在通过所述三相ac充电器对所述蓄电池进行充电时,使三相的所述第三开关元件和所述第四开关元件导通,并且对三相的所述第一开关元件及所述第二开关元件的导通和截止的切换进行控制,以使从所述三相ac充电器输出的三相ac电压转换为dc电压,在所述三电平逆变器各自的所述第三开关元件与所述第四开关元件之间,所述3个连接端子与所述三相ac充电器的3个端子电连接的情况下,在通过所述三相ac充电器对所述蓄电池进行充电之前,通过所述蓄电池对所述第二电容器进行充电,并使所述第一电容器的电压为0[v],在通过所述三相ac充电器对所述蓄电池进行充电时,使三相的所述第一开关元件和所述第二开关元件导通,并且对三相的所述第三开关元件及所述第四开关元件的导通和截止的切换进行控制,以使从所述三相ac充电器输出的三相ac电压转换为dc电压。

    发明效果

    本发明所涉及的电源装置在从蓄电池向电动发电机供给电力时,能够通过将来自蓄电池的dc电压转换为三相ac电压的电力转换器,将从三相ac充电器输出的三相ac电压转换为dc电压而对蓄电池进行充电。因此,本发明所涉及的电源装置起到如下效果:不另行设置将从三相充电器输出的三相ac电压转换为dc电压的转换电路,就能够通过三相ac充电器对蓄电池进行充电。

    附图说明

    图1是实施方式所涉及的具备电源装置的电力系统的结构图。

    图2是表示实施方式所涉及的电力系统的结构的框图。

    图3是表示通过三相ac充电器对电池进行充电之前的第一电路状态的图。

    图4是表示通过三相ac充电器对电池进行充电之前的第二电路状态的图。

    图5是表示通过三相ac充电器对电池进行充电之前的第三电路状态的图。

    图6是表示通过三相ac充电器对电池进行充电时的电路状态的图。

    具体实施方式

    以下,对本发明所涉及的电源装置的实施方式进行说明。另外,本发明并不被本实施方式限定。

    图1是实施方式所涉及的具备电源装置10的电力系统的结构图。实施方式所涉及的电力系统适用于电动汽车、混合动力车辆、phv(plug-inhybridvehicle:插电式混合动力车辆)、reev(rangeextendedelectricvehicle:增程式电动车辆)等能够进行利用电力的行驶的电动车辆。

    实施方式所涉及的电力系统由电源装置10、电动发电机20、三相ac充电器30等构成。另外,实施方式所涉及的电力系统中的电源装置10及电动发电机20搭载于所述电动车辆,三相ac充电器30设于外部充电设备等,该外部充电设备等设置于所述电动车辆的外部。

    电源装置10具备电池12、系统主继电器装置14、电容器部16、电力转换器18、充电继电器装置40以及ecu(electroniccontrolunit:电子控制单元)60等。电源装置10与电动发电机20电连接。

    电池12是能够作为高电压电池进行充放电的蓄电池。作为电池12,例如除了锂离子电池组、镍氢电池组以外,还可以使用镍镉电池、铅蓄电池等。

    系统主继电器装置14由系统主继电器smr-b、系统主继电器smr-g、系统主继电器smr-p以及电抗器140等构成。另外,系统主继电器smr-b的“b”意味着与电池12的正极侧连接。系统主继电器smr-g的“g”意味着与电池12的负极侧连接。系统主继电器smr-p的“p”意味着预充电。

    系统主继电器smr-b设置于与电池12的正极端子连接的正母线22。系统主继电器smr-b通过接收来自后述的未图示的电子控制装置即ecu60(参照图2)的控制信号,从而在接通与断开之间进行切换。

    系统主继电器smr-g设置于与电池12的负极端子连接的负母线24。系统主继电器smr-g通过接收来自ecu60的控制信号,从而在接通与断开之间进行切换。

    系统主继电器smr-p和电抗器140与系统主继电器smr-g并联连接。系统主继电器smr-p与电抗器140串联连接。系统主继电器smr-p通过接收来自ecu60的控制信号,从而在接通与断开之间进行切换。电抗器140用于在将电池12与电力转换器18连接时,抑制流过冲击电流的情况。

    电容器部16由相互串联连接在电池12的正极侧端子(正母线22)与电池12的负极侧端子(负母线24)之间的、作为第一电容器的电容器c1和作为第二电容器的电容器c2构成。电容器c1和电容器c2在中性点np1处相互连接。即,电容器c1的一侧的端子与正母线22连接,另一侧的端子与中性点np1连接。另外,电容器c2的一侧的端子与中性点np1连接,另一侧的端子与负母线24连接。因此,如果电容器c1、c2以相同的方式进行充放电而始终蓄积相同的电荷,则中性点np1与负母线24之间的电压即中性点电压被钳位为电池12的电压的一半的电压。另外,中性点电压相当于电容器c2的端子间电压即电压vc2。另外,图1中的vc1是电容器c1的端子间电压。

    电力转换器18由被供给正母线22与中性点np1之间的电压即正侧电压的上臂、以及被供给中性点np1与负母线24之间的电压即负侧电压的下臂构成。在电力转换器18中,上臂和下臂在正母线22与负母线24之间串联地复用配置,能够将三电平的三相ac电压输出到电动发电机20。

    另外,电力转换器18具备:u相臂,将u相电压输出到电动发电机20;v相臂,将v相电压输出到电动发电机20;以及w相臂,将w相电压输出到电动发电机20。

    在u相臂中,从正母线22朝向负母线24,依次串联连接有第一开关元件su1、第二开关元件su2、第三开关元件su3、第四开关元件su4。各开关元件su1、su2、su3、su4为相对于半导体元件反向并联有回流二极管的结构。另外,所谓反向连接,是指例如在半导体元件的集电极端子连接二极管的阴极端子,并在半导体元件的发射极端子连接二极管的阳极端子。在位于第一开关元件su1与第二开关元件su2之间的作为连接部的中间点pu1(第一中间点)和位于第三开关元件su3与第四开关元件su4之间的作为连接部的中间点pu2(第二中间点),串联连接的两个二极管du1、du2以阳极侧与中间点pu2连接且阴极侧与中间点pu1连接的方式连接。位于两个二极管du1、du2之间的连接点与电容器部16的中性点np1连接。在该结构中,从位于第二开关元件su2和第三开关元件su3之间的连接点向电动发电机20输出u相电压。

    在v相臂中,从正母线22朝向负母线24,依次串联连接有第一开关元件sv1、第二开关元件sv2、第三开关元件sv3、第四开关元件sv4。各开关元件sv1、sv2、sv3、sv4为相对于半导体元件反向并联有回流二极管的结构。在位于第一开关元件sv1与第二开关元件sv2之间的作为连接部的中间点pv1(第一中间点)和位于第三开关元件sv3与第四开关元件sv4之间的作为连接部的中间点pv2(第二中间点),串联连接的两个二极管dv1、dv2以阳极侧与中间点pv2连接且阴极侧与中间点pv1连接的方式连接。位于两个二极管dv1、dv2之间的连接点与电容器部16的中性点np1连接。在该结构中,从位于第二开关元件sv2和第三开关元件sv3之间的连接点向电动发电机20输出v相电压。

    在w相臂中,从正母线22朝向负母线24,依次串联连接有第一开关元件sw1、第二开关元件sw2、第三开关元件sw3、第四开关元件sw4。各开关元件sw1、sw2、sw3、sw4构成为相对于半导体元件反向并联有回流二极管。在作为位于第一开关元件sw1与第二开关元件sw2之间的连接部的中间点pw1(第一中间点)和作为位于第三开关元件sw3与第四开关元件sw4之间的连接部的中间点pw2(第二中间点),串联连接的两个二极管dw1、dw2以阳极侧与中间点pw2连接且阴极侧与中间点pw1连接的方式连接。位于两个二极管dw1、dw2之间的连接点与电容器部16的中性点np1连接。在该结构中,从位于第二开关元件sw2和第三开关元件sw3之间的连接点向电动发电机20输出w相电压。

    在本实施方式中,作为电力转换器18的各开关元件,可以使用igbt(insulatedgatebipolartransistor:绝缘栅双极晶体管)等。

    电动发电机20是搭载于所述电动车辆的旋转电机,在从电池12输出的dc电压由电力转换器18转换为三相ac电压而被供给时作为电动机发挥作用,产生用于使车辆行驶的驱动力。另一方面,电动发电机20在车辆制动时作为发电机发挥作用,回收制动能量而作为三相ac电压输出。然后,通过该三相ac电压由电力转换器18转换为dc电压而供给到电池12,从而对电池12进行充电。

    三相ac充电器30是为了对电池12进行充电而设置于车辆外部的外部充电器。三相ac充电器30具有在用于将三相ac充电器30的未图示的插头与车辆侧的未图示的连接器连接的充电器连接部50中,与电源装置10侧电连接的3个端子即a端子32a、b端子32b和c端子32c。在充电器连接部50与电力转换器18之间,设有具有充电继电器42a、充电继电器42b和充电继电器42c的充电继电器装置40、以及电抗器44a、44b、44c。

    三相ac充电器30的a端子32a经由充电继电器42a及电抗器44a,与电力转换器18的u相臂中的开关元件su3与开关元件su4的中间点pu2电连接。另外,三相ac充电器30的b端子32b经由充电继电器42b及电抗器44b,与电力转换器18的v相臂中的开关元件sv3与开关元件sv4的中间点pv2电连接。另外,三相ac充电器30的c端子32c经由充电继电器42c及电抗器44c,与电力转换器18的w相臂中的开关元件sw3与开关元件sw4的中间点pw2电连接。

    另外,三相ac充电器30的a端子32a、b端子32b和c端子32c只要能够分别与u相臂、v相臂和w相臂中的第一开关元件与第二开关元件的中间点pu1、pv1、pw1、或者第三开关元件与第四开关元件的中间点pu2、pv2、pw2当中的至少一方电连接即可。

    即,也可以将三相ac充电器30的a端子32a与u相臂中的第一开关元件su1与第二开关元件su2的中间点pu1电连接,将三相ac充电器30的b端子32b与v相臂中的第一开关元件sv1与第二开关元件sv2的中间点pv1电连接,并将三相ac充电器30的c端子32c与w相臂中的第一开关元件sw1与第二开关元件sw2的中间点pw1电连接。

    这样,在实施方式所涉及的电源装置10中,在u相臂、v相臂和w相臂中的第一开关元件与第二开关元件之间、或者第三开关元件与第四开关元件之间当中的至少一方,设置有能够与三相ac充电器30的a端子32a、b端子32b和c端子32c电连接的3个连接端子。并且,在本实施方式中,作为设置在u相臂、v相臂和w相臂中的第一开关元件su1、sv1、sw1与第二开关元件su2、sv2、sw2之间的3个连接端子,能够使用中间点pu1、pv1、pw1。另外,在本实施方式中,作为设置在u相臂、v相臂和w相臂中的第三开关元件su3、sv3、sw3与第四开关元件su4、sv4、sw4之间的3个连接端子,能够使用中间点pu2、pv2、pw2。

    另外,也可以仅在u相臂、v相臂和w相臂中的第一开关元件su1、sv1、sw1与第二开关元件su2、sv2、sw2之间设置能够与三相ac充电器30的a端子32a、b端子32b和c端子32c电连接的3个连接端子。另外,也可以仅在u相臂、v相臂和w相臂中的第三开关元件su3、sv3、sw3与第四开关元件su4、sv4、sw4之间设置能够与三相ac充电器30的a端子32a、b端子32b和c端子32c电连接的3个连接端子。

    图2是表示实施方式所涉及的电力系统的结构的框图。ecu60是控制电源装置10等的动作的电子控制装置。ecu60具备充电控制部62及栅极信号生成部64等。另外,在图2中,“vb”是电池电压,“vh”是充电电压。

    从未图示的系统控制部输出的充电电力指令信号、从设置于电力转换器18的未图示的电压计输出的电压相位信号、从设置于电力转换器18的未图示的电流计输出的充电电流信号ia、ib、ic以及从三相ac充电器30输出的充电器信息信号等各种信号被输入到充电控制部62。充电控制部62控制充电电流,以使有效电力=充电电力指令值、无效电力=0。另外,充电控制部62例如将基于充电电力指令信号、电压相位信号以及充电电流信号ia、ib、ic等求出的用于切换u相的开关元件su3、su4的导通和截止的a相占空比(duty)、用于切换v相的开关元件sv3、sv4的导通和截止的b相占空比、以及用于切换w相的开关元件sw3、sw4的导通和截止的c相占空比等输出到栅极信号生成部64。

    另外,在将三相ac充电器30的a端子32a与中间点pu1电连接,将三相ac充电器30的b端子32b与中间点pv1电连接,并将三相ac充电器30的c端子32c与中间点pw1电连接的情况下,充电控制部62将用于切换u相的开关元件su1、su2的导通和截止的a相占空比、用于切换v相的开关元件sv1、sv2的导通和截止的b相占空比、以及用于切换w相的开关元件sw1、sw2的导通和截止的c相占空比等输出到栅极信号生成部64。

    栅极信号生成部64生成用于切换电力转换器18的各开关元件的导通和截止的栅极信号,并将该生成的栅极信号输出到各开关元件。例如,在通过三相ac充电器30进行电池12的充电时,栅极信号生成部64向u相的开关元件su3、su4输出用于以a相占空比切换导通和截止的栅极信号,向v相的开关元件sv3、sv4输出用于以b相占空比切换导通和截止的栅极信号,并向w相的开关元件sw3、sw4输出用于以c相占空比切换导通和截止的栅极信号。

    另外,将三相ac充电器30的a端子32a与中间点pu1电连接,将三相ac充电器30的b端子3b与中间点pv1电连接,并将三相ac充电器30的c端子32c与中间点pw1电连接的情况下,在通过三相ac充电器30进行电池12的充电时,栅极信号生成部64向u相的开关元件su1、su2输出用于以a相占空比切换导通和截止的栅极信号,向v相的开关元件sv1、sv2输出用于以b相占空比切换导通和截止的栅极信号,并向w相的开关元件sw1、sw2输出用于以c相占空比切换导通和截止的栅极信号。

    接着,针对图1所示的电源装置10中的三相ac充电器30对电池12的充电方法进行说明。首先,ecu60在电源装置10中,使系统主继电器装置14的系统主继电器smr-b、smr-g、smr-p、充电继电器装置40的充电继电器42a、42b、42c、以及电力转换器18的全部开关元件分别断开。另外,此时,电荷从电容器c1、c2通过电力线被放电,从而电容器c1、c2的电压成为0[v]。

    接着,如图3所示,ecu60将电力转换器18的第一开关元件su1、sv1、sw1、第二开关元件su2、sv2、sw2、第三开关元件su3、sv3、sw3分别从截止切换为导通。另外,如图3所示,导通的开关元件由圆包围。

    接着,如图4所示,ecu60将系统主继电器装置14的系统主继电器smr-b、smr-p从断开切换为接通,从而利用来自电池12的电力开始电容器c2的充电,并将电容器c2充电至电压达到800[v]。

    在电容器c2的充电完成后,如图5所示,ecu60将系统主继电器装置14的系统主继电器smr-g从断开切换为接通,并且将系统主继电器smr-p从接通切换为断开。另外,ecu60将电力转换器18的第三开关元件su3、sv3、sw3从导通切换为截止。

    接着,如图6所示,ecu60将充电继电器装置40的充电继电器42a、42b、42c从断开切换为接通,从而开始利用来自三相ac充电器30的电力对电池12进行充电。此时,ecu60将电容器c2、u相的开关元件su3、su4、v相的开关元件sv3、su4、w相的开关元件sw3、sw4视为两电平逆变器来进行控制,并作为三相ac-dc转换器来利用。具体而言,ecu60以a相占空比控制u相的开关元件su3、su4各自的导通和截止的切换,以b相占空比控制v相的开关元件sv3、sv4各自的导通和截止的切换,并以c相占空比控制w相的开关元件sw3、sw4各自的导通和截止的切换,从而将三相ac充电器30的三相ac电压转换为dc电压,并利用该转换后的dc电压对电池12进行充电。

    另外,在实施方式所涉及的电源装置10中,在通过三相ac充电器30对电池12进行充电时,将电力转换器18的第一开关元件su1、sv1、sw1和第二开关元件su2、sv2、sw2固定为导通。由此,能够防止将向电动发电机20的电力供给切断,而在电动发电机20产生驱动力,导致电动发电机20旋转的情况。

    另外,与图3~图6所示的电源装置10不同,在由第一开关元件su1、sv1、sw1和第二开关元件su2、sv2、sw2构成的中间点pu1、pv1、pw1与三相ac充电器30的a端子32a、b端子32b和c端子32c电连接的情况下,如以下所述那样通过ecu60控制电源装置10等,从而通过三相ac充电器30对电池12进行充电。即,适当地替换由ecu60控制导通和截止的切换的对象开关元件等,而通过与利用图3~图6等所示的电源装置10所说明的步骤相同的步骤,利用三相ac充电器30对电池12进行充电。

    首先,在通过三相ac充电器30对电池12进行充电之前,ecu60利用来自电池12的电力将电容器c1充电至电压达到800[v],并使电容器c2的电压为0[v]。然后,在通过三相ac充电器30对电池12进行充电时,ecu60使三相的第三开关元件su3、sv3、sw3和第四开关元件su4、sv4、sw4导通,并且通过a相占空比、b相占空比和c相占空比控制三相的第一开关元件su1、sv1、sw1及第二开关元件su2、sv2、sw2的导通和截止的切换,以使从三相ac充电器30输出的三相ac电压转换为dc电压。然后,利用该转换后的dc电压对电池12进行充电。

    在实施方式所涉及的电源装置10中,在从电池12向电动发电机20供给电力时,能够通过将从电池12输出的dc电压转换为三相ac电压的电力转换器18,将从三相ac充电器30输出的三相ac电压转换为dc电压而对电池12进行充电。由此,实施方式所涉及的电源装置10不另外设置将从三相ac充电器30输出的三相ac电压转换为dc电压的转换电路,就能够通过三相ac充电器30对电池12进行充电。由此,与不另行设置所述转换电路相应地,能够实现电源装置10的小型化、低成本化。

    标号说明

    10电源装置

    12电池

    14系统主继电器装置

    16电容器部

    18电力转换器

    20电动发电机

    22正母线

    24负母线

    30三相ac充电器

    32aa端子

    32bb端子

    32cc端子

    40充电继电器装置

    42a、42b、42c充电继电器

    44a、44b、44c电抗器

    50充电器连接部

    60ecu

    62充电控制部

    64栅极信号生成部

    140电抗器

    c1、c2电容器

    du1、du2、dv1、dv2、dw1、dw2二极管

    np1中性点

    pu1、pu2、pv1、pv2、pw1、pw2中间点

    smr-b、smr-g、smr-p系统主继电器

    su1、sv1、sw1第一开关元件

    su2、sv2、sw2第二开关元件

    su3、sv3、sw3第三开关元件

    su4、sv4、sw4第四开关元件


    技术特征:

    1.一种电源装置,具备:

    蓄电池;

    在所述蓄电池的正极侧端子与负极侧端子之间串联连接有第一电容器及第二电容器的电容器部;及

    电力转换器,在该电力转换器中,能够将三电平的电压输出到电动发电机的三电平逆变器以u相、v相和w相这三相与所述蓄电池并联连接,该三电平逆变器由串联连接的第一开关元件、第二开关元件、第三开关元件和第四开关元件、第一二极管以及第二二极管构成,并使所述第一开关元件、所述第二开关元件、所述第三开关元件和所述第四开关元件导通/截止,所述第一二极管将所述第一开关元件和所述第二开关元件之间与所述第一电容器和所述第二电容器之间连接,所述第二二极管将所述第三开关元件和所述第四开关元件之间与所述第一电容器和所述第二电容器之间连接,

    其特征在于,具备:

    3个连接端子,在三相的所述三电平逆变器各自的所述第一开关元件与所述第二开关元件之间或者所述第三开关元件与所述第四开关元件之间当中的至少一方,能够与三相交流充电器的3个端子电连接;及

    控制装置,如下进行控制,

    即,在三相的所述三电平逆变器各自的所述第一开关元件与所述第二开关元件之间所述3个连接端子与所述三相交流充电器的3个端子电连接的情况下,在通过所述三相交流充电器对所述蓄电池进行充电之前,通过所述蓄电池对所述第一电容器进行充电,并使所述第二电容器的电压为0v,在通过所述三相交流充电器对所述蓄电池进行充电时,使三相的所述第三开关元件和所述第四开关元件导通,并且对三相的所述第一开关元件及所述第二开关元件的导通和截止的切换进行控制,以使从所述三相交流充电器输出的三相交流电压转换为直流电压,

    在所述三电平逆变器各自的所述第三开关元件与所述第四开关元件之间所述3个连接端子与所述三相交流充电器的3个端子电连接的情况下,在通过所述三相交流充电器对所述蓄电池进行充电之前,通过所述蓄电池对所述第二电容器进行充电,并使所述第一电容器的电压为0v,在通过所述三相交流充电器对所述蓄电池进行充电时,使三相的所述第一开关元件和所述第二开关元件导通,并且对三相的所述第三开关元件及所述第四开关元件的导通和截止的切换进行控制,以使从所述三相交流充电器输出的三相交流电压转换为直流电压。

    技术总结
    本发明提供一种电源装置,不另外设置将从三相充电器输出的三相AC电压转换为DC电压的转换电路,就能够通过三相AC充电器对蓄电池进行充电。电源装置具备:蓄电池;在蓄电池的正负端子之间串联连接有第一电容器及第二电容器的电容器部;及电力转换器,具有第一开关元件、第二开关元件、第三开关元件、第四开关元件、第一二极管及第二二极管的三电平逆变器以U相、V相和W相这三相与蓄电池并联连接,所述电源装置具备:3个连接端子,在三相的第一开关元件与第二开关元件之间或者三相的第三开关元件与第四开关元件之间当中的至少一方,能够与三相AC充电器的3个端子电连接;及控制装置,控制各开关元件的导通和截止的切换。

    技术研发人员:大畠弘嗣;高松直义
    受保护的技术使用者:丰田自动车株式会社
    技术研发日:2020.09.08
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-3947.html

    最新回复(0)