基于PBI的模拟电路故障参数范围识别方法与流程

    专利2022-07-09  156


    本发明属于模拟电路故障诊断技术领域,更为具体地讲,涉及一种基于pbi的模拟电路故障参数范围识别方法。



    背景技术:

    在模拟电路工作过程中,元件退化会导致性能退化,及时对元件参数进行估计能够预防功能故障的发生。模拟电路发生故障时,除故障元件外,无故障元件参数是容差范围内的随机数,即所有元件参数都是变量。模拟集成电路测点数目有限,独立测试量的数目往往远远小于元件数目c,因此通过测试量和元件参数只能建立欠定方程组,无法精确计算出故障元件参数值。但是能够根据电路结构(传输函数)和容差范围,获得故障参数一个可能的故障范围。为电路性能退化预测提供支持。假定传输函数h(x)=x1x2,x1、x2表示两个元件的参数值,两个元件标称值为10,则标准输出h为100。电路发生故障,测得输出为120,且已知故障源为x1,则容易得到x1=12。考虑到无故障元件x2容差(容差范围[10(1-0.05),10(1 0.05)])的影响,当x2为容差下限9.5时,产生120的故障输出的x1应为12.6;当x2为容差上限10.5时,产生120的故障输出的x1应为11.4。即在±5%的容差影响下,x1在闭区间[11.4,12.6]任意取值都可能得到120的故障输出。当电路结构变得复杂,此闭区间的解析将很难精确计算,即难以确定故障参数范围。



    技术实现要素:

    本发明的目的在于克服现有技术的不足,提供一种基于pbi的模拟电路故障参数范围确定方法,在遗传算法确定故障参数上限或下限过程中,采用pbi计算个体适应度,实现对于故障元件参数范围的精确确定。

    为实现上述发明目的,本发明基于pbi的模拟电路故障参数范围确定方法包括以下步骤:

    s1:获取模拟电路中元件数量c和各个元件的参数标称值xin,i=1,2,…,c,确定模拟电路在预设测点的传输函数,获取当前故障状态下模拟电路在预设测

    点的故障电压相量以及所检测出的故障元件序号c;

    s2:基于pbi确定故障元件参数下限,具体步骤包括:

    s2.1:将元件参数向量x=[x1,x2,…,xc]作为遗传算法种群的个体,生成n个个体构成初始种群p,具体方法为:根据需要设置故障元件c的参数值xc的故障取值范围初始种群p中每个个体中故障元件c的参数值xc在故障取值范围内取值,其余元件i′的参数xi′在容差范围[xi′n×(1-α),xi′n×(1 α)]内取值,其中xi′n表示元件i′的参数标称值,i′=1,2,…,c&i′≠c;

    s2.2:初始化迭代次数t=1;

    s2.3:对种群p中的个体进行交叉和变异,得到新种群q,在交叉和变异过程中需要保证故障元件c的参数值xc在故障取值范围内取值,非故障元件的参数值在容差范围内取值;

    s2.4:将种群p和种群q进行合并,得到合并种群s,即s=p∪q;

    s2.5:分别计算2n个个体中每个个体xk所对应的适应度值fk,其中k=1,2,…,2n,适应度值越小个体越优;适应度值fk的具体计算方法为:

    根据传输函数计算个体所对应元件参数向量在预设测点处的输出电压相量然后计算该输出电压相量与故障电压相量之间的误差将误差进行归一化得到归一化后的误差

    其中,emax、emin分别表示2n个个体所对应误差中的最大值和最小值。

    将每个个体xk中故障元件c的参数值xc,k进行归一化得到归一化后的参数值

    其中,xc,max、xc,min分别表示2n个个体故障元件c的参数值中的最大值和最小值。

    采用以下公式计算得到每个个体xk的适应度值fk:

    s2.6:根据适应度值从2n个个体中优选出n个个体作为下一代种群p′;

    s2.7:判断迭代次数t是否达到预设的最大迭代次数tmax,如果未达到,则进入步骤s2.8,否则进入步骤s2.9;

    s2.8:令种群p=p′,t=t 1,返回步骤s2.3;

    s2.9:将当前种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围下限xcl;

    s3:采用与步骤s2中的相同算法流程确定故障元件参数上限xcu,在算法执行过程中采用以下公式计算个体xk的适应度值fk:

    适应度值越小个体越优;

    算法执行完毕后,将最后一代种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围下限xcu。

    本发明基于pbi的模拟电路故障参数范围确定方法,将元件参数向量作为遗传算法种群的个体,在生成初始种群的时候,故障元件的参数值在预设的故障取值范围中取值,其余元件在容差范围内取值,遗传算法迭代过程中,采用pbi计算个体适应度值,采用两次遗传算法分别在迭代完成后最后一代种群提取出故障元件参数的上限和上限。本发明结合遗传算法和pbi方法,实现对于故障元件参数范围的精确确定。

    附图说明

    图1是pbi优化示意图;

    图2是本发明基于pbi的模拟电路故障参数范围确定方法的具体实施方式流程图;

    图3是本发明中基于pbi确定故障元件参数下限的流程图;

    图4是本实施例中二阶托马斯模拟滤波电路的电路图;

    图5是本实施例中基于pbi确定故障元件参数下限的最后一代种群示意图。

    具体实施方式

    下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。

    为了更好地说明本发明的技术方案,首先对本发明的技术思路进行简要说明。

    假定模拟电路在预设测点上的传输函数为h(s,x),其中s=jω,j表示虚数单位,ω表示角频率,x表示元件参数向量,x=[x1,x2,…,xc],xi表示第i个元件的参数,i=1,2,…,c,c表示模拟电路的元件数量。那么传输函数h(s,x)可以表示为:

    其中,表示输入电压相量,表示测点的输出电压相量,an,an-1,…,a0、bm,bm-1,…,b0表示以元件参数值为变量的函数。

    如果频率不变,那么传输函数h(s,x)仅由参数向量x确定。如果将输入电压相量作为参考向量,即那么:

    如果模拟电路实测电压为故障编号为f,其故障元件参数用xf表示,则故障参数范围识别就是找到满足以下约束的最大故障元件参数值xu和最小故障元件参数值xl:

    那么确定最小故障元件参数值xl可以表达成:

    其中,xin表示第i个元件的参数标称值,α表示容差参数,其取值范围一般为α∈(0,0.05]。

    那么确定最大故障元件参数值xu可以表达成:

    将约束优化问题转化为双目标优化问题,式(4)和式(5)可以重写为:

    其中,e(x)表示输出电压相量和故障电压相量的误差,当xf取相反数-xf时,最小化-xf就能实现求取最大故障元件参数值xu。

    基于惩罚的边界交叉法(penalty-basedboundaryintersection,pbi)定义如下:

    其中,为理想点,表示第j个目标处的极小值。x为自变量,w为参考向量,θ为惩罚因子。d1是作为x对pf面的收敛性指标,d2作为度量种群多样性的指标。g(x|w,z*)=d1 θd2作为收敛性和多样性的x的复合度量。pbi方法的目标是尽可能地降低目标函数,使其尽可能的达到pf面。

    图1是pbi优化示意图。如图1所示,就本发明所要解决的问题而言,式(6)中需要e(x)接近0,而xf尽量小。在e(x)-xf平面上可以表达为沿着权w=[0,1]最小化。此时,式(7)中d1就是归一化之后的故障元件参数xf,d2就是归一化之后的误差e(x)。

    因此,最小参数识别问题就可以表达为:

    其中,分别表示故障元件参数xf、误差e(x)的归一化值。

    基于以上思路,提出本发明基于pbi的模拟电路故障参数范围确定方法。图2是本发明基于pbi的模拟电路故障参数范围确定方法的具体实施方式流程图。如图2所示,本发明基于pbi的模拟电路故障参数范围确定方法的具体步骤包括:

    s201:获取模拟电路故障数据:

    获取模拟电路中元件数量c和各个元件的参数标称值xin,i=1,2,…,c,确定模拟电路在预设测点的传输函数,获取当前故障状态下模拟电路在预设测点的故障电压相量以及所检测出的故障元件序号c。

    s202:基于pbi确定故障元件参数下限:

    接下来基于pbi确定故障元件参数下限。图3是本发明中基于pbi确定故障元件参数下限的流程图。如图3所示,本发明中基于pbi确定故障元件参数下限的具体步骤包括:

    s301:初始化遗传算法种群:

    将元件参数向量x=[x1,x2,…,xc]作为遗传算法种群的个体,生成n个个体构成初始种群p,具体方法为:根据需要设置故障元件c的参数值xc的故障取值范围初始种群p中每个个体中故障元件c的参数值xc在故障取值范围内取值,其余元件i′的参数xi′在容差范围[xi′n×(1-α),xi′n×(1 α)]内取值,其中xi′n表示元件i′的参数标称值,i′=1,2,…,c&i′≠c。本实施例中故障元件c的参数值xc的故障取值范围为[xcn×10-3,xcn×103]。

    s302:初始化迭代次数t=1。

    s303:交叉变异:

    对种群p中的个体进行交叉和变异,得到新种群q,在交叉和变异过程中需要保证故障元件c的参数值xc在故障取值范围内取值,非故障元件的参数值在容差范围内取值。

    本实施例中个体交叉采用模拟二进制交叉,变异采用多项式变异,交叉率和变异率根据实际需要设置即可。

    s304:合并种群:

    将种群p和种群q进行合并,得到合并种群s,即s=p∪q。显然合并种群s中包含2n个个体。

    s305:基于pbi计算个体适应度值:

    分别计算2n个个体中每个个体xk所对应的适应度值fk,其中k=1,2,…,2n,适应度值fk的具体计算方法为:

    根据传输函数计算个体所对应元件参数向量在预设测点处的输出电压相量然后计算该输出电压相量与故障电压相量之间的误差将误差进行归一化得到归一化后的误差

    其中,emax、emin分别表示2n个个体所对应误差中的最大值和最小值。

    将每个个体xk中故障元件c的参数值xc,k进行归一化得到归一化后的参数值:

    其中,xc,max、xc,min分别表示2n个个体故障元件c的参数值中的最大值和最小值。

    采用以下公式计算得到每个个体xk的适应度值fk:

    其中,θ为预设的惩罚因子。

    显然适应度值越小个体越优。

    s306:个体优选:

    根据适应度值从2n个个体中优选出n个个体作为下一代种群p′。本实施例中采用二选一锦标赛优选算法进行个体优选。

    s307:判断迭代次数t是否达到预设的最大迭代次数tmax,如果未达到,则进入步骤s308,否则进入步骤s309;

    s308:令种群p=p′,t=t 1,返回步骤s303;

    s309:确定故障参数下界:

    将当前种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围下限xcl。

    s203:基于pbi确定故障元件参数上限:

    基于pbi确定故障元件参数上限,其算法流程与步骤s202相同,但是由于此时需要确定故障元件参数上限,需要对适应度计算公式进行调整,即在算法执行过程中采用以下公式计算得到每个个体xk的适应度值fk:

    同样地,适应度值越小个体越优。

    算法执行完毕后,将最后一代种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围上限xcu。

    实施例

    为了更好地说明本发明的技术方案和技术效果,采用一个具体模拟电路对本发明进行实验验证。图4是本实施例中二阶托马斯模拟滤波电路的电路图。如图4所示,本实施例中二阶托马斯模拟滤波电路包括6个电阻元件,2个电容以及3个放大器,各元件参数的标称值如图4中标示。本实施例中以vout作为测点,其传输函数如下式所示:

    本实施例中设置故障元件为电阻r2,令其参数值为19kω,其它元件在容差范围(本实施例设置容差参数α=0.05,则容差范围为(xin×95%,xin×105%))内随机取值。输入信号为有效值为1v,频率为1khz的正弦信号。仿真得到故障电压相量

    将元件参数向量x=[x1,x2,…,xc]作为遗传算法种群的个体,本实施例中c=8,前6位为电阻,最后2位为电容。设置故障元件2(即电阻r2)的参数值x2的故障取值范围[1ω,100mω],初始种群p中每个个体中故障元件2的参数值在该故障取值范围内随机取值,其余元件i′的参数xi′在容差范围(xi′n×95%,xi′n×105%)内随机取值。设置种群数目n=200,最大迭代次数tmax=400。

    图5是本实施例中基于pbi确定故障元件参数下限的最后一代种群示意图。如图5所示,可以确定本实施例中故障元件参数下限x2l=17410ω,此时其他元件的参数值分别为:r1=10087ω,r3=9900ω,r4=9900ω,r5=9900ω,r6=11000ω,c1=9.9nf,c2=9.9nf。对应的误差e(x)=1.3515e-06,接近零,精度完全满足要求。同理基于pbi确定故障元件参数上限x2u=20808ω,此时其他元件的参数值分别为:r1=9073ω,r3=11000ω,r4=11000ω,r5=11000ω,r6=9900ω,c1=11nf,c2=11nf。对应的误差e(x)=1.1471e-07,接近零,精度完全满足要求。从而得到故障参数范围为[17410ω,20808ω],即所有故障元件2的参数值在闭区间[17410ω,20808ω]内的故障都可以产生故障电压相量显然,设定的故障r2=19kω也在此范围内。

    尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。


    技术特征:

    1.一种基于pbi的模拟电路故障参数范围确定方法,其特征在于,包括以下步骤:

    s1:获取模拟电路中元件数量c和各个元件的参数标称值xin,i=1,2,…,c,确定模拟电路在预设测点的传输函数,获取当前故障状态下模拟电路在预设测点的故障电压相量以及所检测出的故障元件序号c;

    s2:基于pbi确定故障元件参数下限,具体步骤包括:

    s2.1:将元件参数向量x=[x1,x2,…,xc]作为遗传算法种群的个体,生成n个个体构成初始种群p,具体方法为:根据需要设置故障元件c的参数值xc的故障取值范围初始种群p中每个个体中故障元件c的参数值xc在故障取值范围内取值,其余元件i′的参数xi′在容差范围[xi′n×(1-α),xi′n×(1 α)]内取值,其中xi′n表示元件i′的参数标称值,i′=1,2,…,c&i′≠c;

    s2.2:初始化迭代次数t=1;

    s2.3:对种群p中的个体进行交叉和变异,得到新种群q,在交叉和变异过程中需要保证故障元件c的参数值xc在故障取值范围内取值,非故障元件的参数值在容差范围内取值;

    s2.4:将种群p和种群q进行合并,得到合并种群s,即s=p∪q;

    s2.5:分别计算2n个个体中每个个体xk所对应的适应度值fk,其中k=1,2,…,2n,适应度值越小个体越优;适应度值fk的具体计算方法为:

    根据传输函数计算个体所对应元件参数向量在预设测点处的输出电压相量然后计算该输出电压相量与故障电压相量之间的误差将误差进行归一化得到归一化后的误差

    其中,emax、emin分别表示2n个个体所对应误差中的最大值和最小值。

    将每个个体xk中故障元件c的参数值xc,k进行归一化得到归一化后的参数值

    其中,xc,max、xc,min分别表示2n个个体故障元件c的参数值中的最大值和最小值。

    采用以下公式计算得到每个个体xk的适应度值fk:

    s2.6:根据适应度值从2n个个体中优选出n个个体作为下一代种群p′;

    s2.7:判断迭代次数t是否达到预设的最大迭代次数tmax,如果未达到,则进入步骤s2.8,否则进入步骤s2.9;

    s2.8:令种群p=p′,t=t 1,返回步骤s2.3;

    s2.9:将当前种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围下限xcl;

    s3:采用与步骤s2中的相同算法流程确定故障元件参数上限xcu,在算法执行过程中采用以下公式计算个体xk的适应度值fk:

    适应度值越小个体越优;

    算法执行完毕后,将最后一代种群p′中误差最小个体中故障元件c的参数值作为故障元件c的参数范围下限xcu。

    技术总结
    本发明公开了一种基于PBI的模拟电路故障参数范围确定方法,将元件参数向量作为遗传算法种群的个体,在生成初始种群的时候,故障元件的参数值在预设的故障取值范围中取值,其余元件在容差范围内取值,遗传算法迭代过程中,采用PBI计算个体适应度值,采用两次遗传算法分别在迭代完成后最后一代种群提取出故障元件参数的上限和上限。本发明结合遗传算法和PBI方法,实现对于故障元件参数范围的精确确定。

    技术研发人员:杨成林;鲜航;杨小燕
    受保护的技术使用者:电子科技大学
    技术研发日:2020.11.30
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-25393.html

    最新回复(0)