一种基于多元非线性回归的退役电池储能电站寿命预测方法与流程

    专利2022-07-09  70


    本发明涉及储能
    技术领域
    ,具体为一种基于多元非线性回归的退役电池储能电站寿命预测方法。
    背景技术
    :随着电力体制改革的进一步推进,推动市场化机制和价格机制的储能政策将为储能应用带来新一轮的高速发展,市场需求也将趋于刚性,在此背景下,电化学储能的规模将实现两连跳,2022年或突破10gw,2023年将接近20gw。而锂离子动力电池具有高能量密度、高工作电压、高安全性和长寿命等优点,是电动汽车的主要动力来源。近年来,由于政策的支持,电动汽车呈现爆发式增长,未来将退役大批量剩余容量为70~80%的废旧锂离子电池,退役下的电池若直接报废,不仅会造成资源浪费,还会对环境产生很大的危害。如果将退役动力电池包经过分选后整包利用到储能领域,将带来电力行业的一场变革,不仅减少资源的浪费和环境污染,而且能产生一定的经济价值,实现双赢。在储能行业及退役电池梯次利用行业政策等的双重驱动下,退役电池储能电站数量会越来越多,储能电站的远程运维将变得十分重要。退役电池储能电站的寿命对电站的运维和经济效益都有重要作用,而目前如何通过评估电池的生命周期,对电池的失效实现预判和预处理,一直是远程运维工作难点。若能够通过远程收集的退役电池储能电站中退役电池包的运行数据进行统计分析,建立退役电池包的寿命预估模型,建立一套寿命预测方法提前预知其寿命,指导电站的运维工作,对于保障电站正常工作,提高经济效益和电站的安全可靠性具有十分重要的意义。目前还没有争对退役电池储能电站的剩余寿命预测方法,只有单独对退役电池的寿命进行预测的方法,而目对退役电池的寿命预测主要是基于测试数据和历史大数据,这种预测方法没有考虑实际工况,预测结果跟实际运行数据有较大的差异,而本发明采用退役电池包在储能电站的实际运行数据,并使用多元非线性回归的方法预测寿命,极大的提高了预测的准确度。技术实现要素:本发明提供了一种基于多元非线性回归的退役电池储能电站寿命预测方法,通过采集退役电池储能电站中退役动力电池包的实际运行数据,结合多元非线性回归方法,预测储能电站中每个电池包的剩余寿命,然后根据电池包的剩余寿命,判断整个储能电站的寿命,该方法极大的提高了预测的准确性。本发明提供如下技术方案:一种基于多元非线性回归的退役电池储能电站寿命预测方法,包括以下操作步骤:步骤1:数据采集采集退役电池储能电站中退役动力电池包的运行数据;步骤2:数据清洗对采集的退役动力电池包数据进行整理和清洗,去除无效、异常的数据点,保留有效的数据点;步骤3:构造参数根据采集的数据构造参数,主要包括退役动力电池包充电量、充电时长、充电倍率、soc极差、最高电压、最低电压、电压极差、平均电压、最高温度、最低温度、平均温度、温度极差、累计充电次数;步骤4:选择特征参数分析步骤3中充电量与其他参数的线性相关性,选择线性相关性≥0.85的参数为第一类特征参数,选择线性相关性<0.85的参数为第二类特征参数;步骤5:模型选择选择多元非线性回归模型,将每个退役动力电池包的放电量作为因变量,步骤4中第一类特征参数和第二类特征参数为自变量,根据电池包的数量构建多个模型;步骤6:模型训练及评价根据清洗后的退役动力电池包的数据集,采用5-折交叉验证方法来对模型进行训练和打分,模型评价标准采用决定系数r2,同时做出roc曲线,直观观察预测值与实际值差异;步骤7:模型输出根据步骤6中得到的模型,将模型保存待用,根据步骤6对每个退役动力电池包的数据集进行处理,得多若干个模型,保存待用;步骤8:剩余寿命的预测根据训练得到的模型,对退役电池储能电站退役动力电池包的剩余循环寿命进行预测,得到每个退役动力电池包的剩余寿命;步骤9:选择若干个退役动力电池包寿命的平均值作为退役电池储能电站的剩余寿命。优选的,所述退役电池储能电站由若干个独立控制的退役动力电池包组成,一个退役动力电池包的寿命终结,不影响其他电池包的运行;电池包是由若干个电池模组串联而成,模组是由若干个电芯串并联组成。优选的,所述步骤1中的运行数据指充电数据或放电数据。优选的,所述寿命的预测,随着退役电池储能电站运行次数的增加,电池的充电量会越来越低,当充电量衰减到初始慢充电量的80%时,即达到寿命终点。本方法中将衰减到80%的充电量,以及目前电站日充电时长的80%、soc极差、充电倍率、电压极差、平均电压、平均温度,带入多元回归模型可得出电池衰减到80%时的累计充放电次数,与初始累计充放电次数做差,即可得退役动力电池包的剩余寿命。本发明具备以下有益效果:该基于多元非线性回归的退役电池储能电站寿命预测方法,通过采集每个退役动力电池包在储能电站中的实际运行数据,采用科学的方法对采集的原始数据进行数据清洗和特征提取,特征间相关性分析可更直观看到特征间相互关系,找出影响锂电池剩余循环寿命的重要因素,结合多元非线性回归方法,预测每个退役电池包的寿命,然后结合电池包的剩余寿命,预测整个储能电站的寿命,极大的提高了预测的准确性。附图说明图1为本发明特征参数与充电量的线性相关性示意图;图2为本发明电池包roc曲线示意图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。请参阅图1-2,一种基于多元非线性回归的退役电池储能电站寿命预测方法,包括以下操作步骤:步骤1:数据采集采集退役电池储能电站中退役动力电池包的运行数据;运行数据指充电数据或放电数据,数据包括退役电池包的soc、soh、电池的平均温度、平均电压、总压、充电量、充电截至时电池包中电池的最高电压、充电截至时电池包中电池的最低电压、最低温度、最高温度、最大允许充电电流、最大允许放电电流、充电电流,充电开始时间、充电结束时间,数据采集间隔为5min,值取时间间隔最新值;步骤2:数据清洗对采集的退役动力电池包数据进行整理和清洗,去除无效、异常的数据点,保留有效的数据点;步骤3:构造参数根据采集的数据构造参数,主要包括退役动力电池包充电量、充电时长、充电倍率、soc极差、最高电压、最低电压、电压极差、平均电压、最高温度、最低温度、平均温度、温度极差、累计充电次数;这些特征参数的计算方式如下:充电量q:电池包充电截至时充入电池包的电量;充电时长h:充电结束时间-充电开始时间;充电倍率c:充电电流/日充电电量;累计充电次数n:退役电池储能系统已累计的充放电次数soc极差△s:充电结束soc-充电开始soc最高电压hv:充电截止时电池包中电池的最高电压;最低电压lv:充电截止时电池包中电池的最低电压;电压极差△v:最高电压-最低电压;平均电压av:平均电压均值;最高温度ht:电池包充电截止时电芯的最高温度;最低温度lt:电池包充电截止时电芯的最低温度;温度极差△t:充电截止时最高温度–充电截止时最低温度;平均温度at:平均温度均值;步骤4:选择特征参数分析步骤3中充电量与其他参数的线性相关性,选择线性相关性≥0.85的参数为第一类特征参数,选择线性相关性<0.85的参数为第二类特征参数;经过分析,虚退役动力电池包充电时长、充电倍率、soc极差、电压极差、平均电压、最低电压的相关性≥0.85,为第一类特征参数;累计充电次数、最高电压、最高温度、最低温度、温度极差、平均温度的显现相关性<0.85,为第二类特征参数。步骤5:模型选择选择多元非线性回归模型,将每个退役动力电池包的放电量作为因变量,步骤4中第一类特征参数和第二特征类参数自变量,根据电池包的数量构建多个模型;本方案采用多元非线性回归模型:yi=θ0 θ1x1i θ2x2i … θkxki γ1z1i2 … γ1zmi2其中,θ0为常数项,θk为系数,yi为因变量,为因变量xki,zmi为自变量,其中xki为第一类特征参数,zmi为第二类特征参数,k为第一类特征参数的个数,m为第二特征参数的个数,i为数据组数;本发明中k和m都为6.步骤6:模型训练及评价根据清洗后的退役动力电池包的数据集,采用5-折交叉验证方法来对模型进行训练和打分,模型评价标准采用决定系数r2,同时做出roc曲线,直观观察预测值与实际值差异;5-折交叉验证法基本原理如下:s1,将从储能电站中取出的每天的特征参数数集分成5个不相交的子集,假设s中的训练样例个数为m,那么每一个子集有m/5个训练样例,相应的子集称作{s1,s2,…,s5};s2,每次从分好的子集中里面,拿出一个作为测试集,其它4个作为训练集;s3,根据训练训练出回归模型;s4,将测试集代入模型中,计算决定系数,算出r2值;s5,计算5次求得的决定系数的平均值,作为该模型的准确率。模型评价采用决定系数r2,决定系数反应了y的波动有多少百分比能被x的波动所描述,即表征变数y的变异中有多少百分比,可由控制的自变数x来解释,拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高,观察点在回归直线附近越密集,取值范围为[0,1]。计算公式如下:r2=ssr/sst=1-sse/sst其中,sst=ssr sse,sst(totalsumofsquares)为总平方和,ssr(regressionsumofsquares)为回归平方和,sse(errorsumofsquares)为残差平方和;设为待拟合数值,其均值为,拟合值为,记:总平方和(sst):回归平方和(ssr):残差平方和(sse):则有:sst=ssr sse决定系数:以退役动力电池包1为例说明模型训练过程;本方明中n=12,i为30,其取储能系统30天内的充电数据;退役动力电池包1数据集大小为(30,12),选择将充电量作为因变量,其他特征为自变量,采用5-折交叉验证法对模型进行对此训练,取5次训练结果均值作为输出,得到多元非线性回归模型如下:q=210.6 (0.003*h) (-0.513*c) (0.081*△s) (-9.214*△v) (-50.053*av) (0.023*lv) (-0.021*n2) (0.215*hv2) (-5.780*ht2) (11.241*lt2) (0.875*△t2) (0.012at2)12个退役动力电池包r2计算结果:电池包1电池包2电池包3电池包4电池包5电池包6r20.95170.9840.98390.99740.99480.9839电池包7电池包8电池包9电池包10电池包11电池包12r20.99550.99080.97170.8360.97840.9563步骤7:模型输出根据步骤6中得到的模型,将模型保存待用,根据步骤6对每个退役动力电池包的数据集进行处理,得多若干个模型,保存待用;步骤8:剩余寿命的预测根据训练得到的模型,对退役电池储能电站退役动力电池包的剩余循环寿命进行预测,得到每个退役动力电池包的剩余寿命;具体是将充电量设为额定充电量的80%,除累计充电次数外,其余变量值取数据最后一天的数据,可求出在相同条件下的累计充放电次数,之后做差值,即可求得电池包剩余可充放电次数;根据上述方法计算出的储能电站中退役动力包的剩余寿命如下表所示:电池包1电池包2电池包3电池包4电池包5电池包6剩余寿命/次数155013671243153313511427电池包7电池包8电池包9电池包10电池包11电池包12剩余寿命/次数133411231456103214381189步骤9:选择若干个退役动力电池包寿命的平均值作为退役电池储能电站的剩余寿命。退役电池储能电站由若干个独立控制的退役动力电池包组成,一个退役动力电池包的寿命终结,不影响其他电池包的运行;电池包是由若干个电池模组串联而成,模组是由若干个电芯串并联组成。寿命的预测,随着退役电池储能电站运行次数的增加,电池的充电量会越来越低,当充电量衰减到初始慢充电量的80%时,即达到寿命终点;本方法中将衰减到80%的充电量,以及目前电站日充电时长的80%、soc极差、充电倍率、电压极差、平均电压、平均温度,带入多元回归模型可得出电池衰减到80%时的累计充放电次数,与初始累计充放电次数做差,即可得退役动力电池包的剩余寿命。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。当前第1页1 2 3 
    技术特征:

    1.一种基于多元非线性回归的退役电池储能电站寿命预测方法,其特征在于:包括以下操作步骤:

    步骤1:数据采集

    采集退役电池储能电站中退役动力电池包的运行数据;

    步骤2:数据清洗

    对采集的退役动力电池包数据进行整理和清洗,去除无效、异常的数据点,保留有效的数据点;

    步骤3:构造参数

    根据采集的数据构造参数,主要包括退役动力电池包充电量、充电时长、充电倍率、soc极差、最高电压、最低电压、电压极差、平均电压、最高温度、最低温度、平均温度、温度极差、累计充电次数;

    步骤4:选择特征参数

    分析步骤3中充电量与其他参数的线性相关性,选择线性相关性≥0.85的参数为第一类特征参数,选择线性相关性<0.85的参数为第二类特征参数;

    步骤5:模型选择

    选择多元非线性回归模型,将每个退役动力电池包的放电量作为因变量,步骤4中第一类特征参数和第二类特征参数自变量,根据电池包的数量构建多个模型;

    步骤6:模型训练及评价

    根据清洗后的退役动力电池包的数据集,采用5-折交叉验证方法来对模型进行训练和打分,模型评价标准采用决定系数r2,同时做出roc曲线,直观观察预测值与实际值差异;

    步骤7:模型输出

    根据步骤6中得到的模型,将模型保存待用,根据步骤6对每个退役动力电池包的数据集进行处理,得多若干个模型,保存待用;

    步骤8:剩余寿命的预测

    根据训练得到的模型,对退役电池储能电站退役动力电池包的剩余循环寿命进行预测,得到每个退役动力电池包的剩余寿命;

    步骤9:选择若干个退役动力电池包寿命的平均值作为退役电池储能电站的剩余寿命。

    2.根据权利要求1所述的一种基于多元非线性回归的退役电池储能电站寿命预测方法,其特征在于:所述退役电池储能电站由若干个独立控制的退役动力电池包组成,一个退役动力电池包的寿命终结,不影响其他电池包的运行;电池包是由若干个电池模组串联而成,模组是由若干个电芯串并联组成。

    3.根据权利要求1所述的一种基于多元非线性回归的退役电池储能电站寿命预测方法,其特征在于:所述步骤1中的运行数据指充电数据或放电数据。

    4.根据权利要求1所述的一种基于多元非线性回归的退役电池储能电站寿命预测方法,其特征在于:所述寿命的预测,随着退役电池储能电站运行次数的增加,电池的充电量会越来越低,当充电量衰减到初始慢充电量的80%时,即达到寿命终点;本方法中将衰减到80%的充电量,以及目前电站日充电时长的80%、soc极差、充电倍率、电压极差、平均电压、平均温度,带入多元回归模型可得出电池衰减到80%时的累计充放电次数,与初始累计充放电次数做差,即可得退役动力电池包的剩余寿命。

    技术总结
    本发明涉及储能技术领域,且公开了一种基于多元非线性回归的退役电池储能电站寿命预测方法,采集退役电池储能电站中退役动力电池包的运行数据。该基于多元非线性回归的退役电池储能电站寿命预测方法,通过采集每个退役动力电池包在储能电站中的实际运行数据,采用科学的方法对采集的原始数据进行数据清洗和特征提取,特征参数间相关性分析可更直观看到特征间相互关系,找出影响退役动力电池剩余循环寿命的重要因素,结合多元非线性回归方法,预测每个退役动力电池包的寿命,然后结合电池包的剩余寿命,预测整个储能电站的寿命,极大的提高了预测的准确性。

    技术研发人员:司静;洪星;杨帆
    受保护的技术使用者:江苏慧智能源工程技术创新研究院有限公司
    技术研发日:2020.10.12
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-25310.html

    最新回复(0)