本发明属于电池
技术领域:
,具体涉及一种基于温度概率密度函数的电池健康状态快速评估方法。
背景技术:
:随着电动汽车的快速发展,越来越多的电动汽车安全问题受到人们的关注的同时也面临着大批退役电池的回收压力。由于电池在使用过程中的逐渐老化,存储能量和所提供功率的能力在寿命期内逐渐下降,这增加了电池系统的运行风险,由其所带来的电动汽车驾驶安全问题也成为困扰用户的主要问题之一,电池的健康状态(stateofhealth,soh)作为评估电池老化状态的重要指标,不仅可以在线诊断电池系统中电池老化状态,帮助电池管理系统(bms)更改充电策略,避免风险。也可作为动力电池回收产业梯次利用中退役电池的快速筛选和重组环节的关键指标,对退役电池soh进行检测和快速识别,将符合条件的电池筛选出来进行梯次利用。电池健康状态评估方法有多种,传统方法是基于容量和内阻直接测量的方法,例如开路电压(ocv)法和交流阻抗法(eis)。此类方法测试虽精准但无法适用于运行的电动汽车,其中eis更需要复杂昂贵的测试设备,不便于车载和大规模应用。目前比较流行的是提取健康因子的间接测量方法,通过提取与电池容量相关联的外部特征参数来进行评估。例如基于充放电曲线的容量增量分析法(ica)和差分电压分析法(dva),通过分析dv曲线的峰间距或ic曲线的峰面积可以得到参加材料相变过程的电量。以上两种方法均为基于电压特性曲线的测量并且需要进行完整的充放电测试,所需时间长不适合在线实时估计。并且采用积分的方法分析数据需要对数据进行预处理,增加了计算成本。有研究发现电池在运行期间熵热的生成速率同样含有与电池soh状态相关的重要信息,由其所引起的温度变化自然也可以作为soh评估的新指标,从而得到电池容量衰减情况。熵对阴极的晶体结构转变(相变)以及结构无序变化极为敏感,而阴极结构劣化是导致锂离子电池性能衰减的重要原因。熵是温度的直接函数,如公式(1)所示:其中,e0(x,t)为在温度t下的开路电动势,x为荷电量,f是法拉第常数(96485c/mol),p为大气压。由此可见,熵的变化可以由温度变化反映出来。因此通过在恒电流充/放电过程中获取电池表面的温度曲线,即可获取有关受控环境中电池熵行为的信息,进而获电池健康状态状况。专利公告号为cn111308377a的发明公开了一种基于温度电压微分的电池健康状态检测方法,根据容易测量的电池表面温度和电池端电压计算温度电压微分曲线来提取高精度强鲁棒性的健康因子即电池特征值,建立与电池健康状态的映射关系,由于健康因子与电池健康状态的强相关性,降低了电池健康状态诊断误差。但是该方法中需要非常低的电流倍率才可得到dv曲线,时间较长,效率不高。专利cn111693881a的发明公开了基于“标准化温度”的宽温度范围下电池健康状态在线估测方法,通过电池的ic曲线建立标准电池温度敏感特征点与温度定量关系,得到不同温度下ic曲线标准化变换,建立基于“box-cox变换”的容量敏感特征点与容量关系,通过特征点高度来估算电池soh。该发明通过“标准化温度”变换拓宽了ic曲线求解电池soh的温度范围,从而解决了ic曲线求解电池soh在宽温度范围内的精度不高的问题。但以上两种方法无论是容量增量分析法(ica)还是温度电压微分法(dtv)都是属于微分曲线方法,计算的微分曲线上会存在大量的噪声峰,这影响了数据的数学处理和后续soh的分析。解决的方法往往是通过各种滤波的手段将曲线拟合,计算成本高昂,阻碍了此类方法的在线应用。专利cn103675702a的发明公开了一种基于电压概率密度函数的电池健康状态评估方法,通过获取样本电池特征区间内电压参数频次建立样本电池的电压概率密度模型,待测电池的健康状态可根据建好的模型确定。此类方法基于数值统计学,其数学基础与ica等方法一致,pdf法得到的曲线与微分曲线法得到的曲线几乎完全一致,但不需对数据进行预处理。避免了噪声问题,降低了计算成本,简单快速。但基于电压的pdf法并不适用于并联电芯的电池健康状态评估。无论是充放电过程还是静置过程中,在同一时刻并联电芯的电压是相同的。虽然这些并联电芯之间存在不一致性,但由于测得的电压是一样的,基于电压的pdf法无法区分开这些并联电芯的不一致性,也就无法评估并联电芯各自的soh值。基于以上分析,如果能把电池模组或系统的并联电芯之间的不一致性区别开来,通过建立简单可靠的电池健康状态模型,那就可以实现储能电站电池健康状态精细化的在线快速评估。技术实现要素:本发明是为了解决上述问题而进行的,目的在于提供一种基于温度概率密度函数的电池健康状态快速评估方法。本发明提供了一种基于温度概率密度函数的电池健康状态快速评估方法,具有这样的特征,包括如下步骤:步骤1,采集在电池在充放电过程中不同时刻的充放电温度数据;步骤2,将电池充放电温度数据转化成概率密度曲线即pdf曲线,从而得到温度的概率密度图;步骤3,在pdf曲线中查找特征温度下的特征峰峰高;步骤4,对不同可用容量的电池样本进行容量标定,计算上述不同可用容量的电池样本的soh,同时重复步骤1-步骤3,得到上述不同可用容量的电池样本的soh对应的特征峰峰高;步骤5,通过步骤3和步骤4得到数据作特征峰峰高-soh拟合曲线;步骤6,选定n个需要进行评估的电池样本,而后重复步骤1-步骤4,得到需要进行评估的电池样本的soh对应的特征峰峰高,再根据步骤5中的特征峰峰高-soh拟合曲线查找特征峰峰高所对应的电池soh值,从而实现电池健康状态的快速评估。在本发明提供的基于温度概率密度函数的电池健康状态快速评估方法中,还可以具有这样的特征:其中,步骤1中,采用电池管理系统的热电偶自动采集不同时刻的充放电温度数据。在本发明提供的基于温度概率密度函数的电池健康状态快速评估方法中,还可以具有这样的特征:其中,步骤2中,采用matlab统计工具箱中的ksdensity函数将电池充放电温度数据转化成pdf曲线。在本发明提供的基于温度概率密度函数的电池健康状态快速评估方法中,还可以具有这样的特征:其中,步骤4中,soh的计算公式如下:发明的作用与效果根据本发明所涉及的基于温度概率密度函数的电池健康状态快速评估方法,使用概率密度函数可以基于电池内部机理实现对于电池健康状态的实时估计,并且与现有的方法相比,基于温度数据的pdf评估技术避免了噪声处理,节省了计算成本和时间。此外,本发明采用热电偶实时采集电池温度数据传输到电池管理系统,实现对每个电池的精准监测,准确识别出“短板”电芯,特别是并联的短板电芯,进而对电池系统的运行策略提供指导,方便快捷,更加精准,可靠性更高;并且建模后只需要获取特征温度区间内的充放电温度数据片段即可对电池健康状态进行在线实时评估,简单快速,还适用于不同级别如单体、模组或系统等的电池健康状态评估,适用性更强。附图说明图1是本发明的实施例中基于温度概率密度函数的电池健康状态快速评估方法的示意图;图2是本发明的实施例中基于温度概率密度函数的电池健康状态快速评估方法的流程图;图3是本发明的实施例中基于温度概率密度函数的电池健康状态快速评估方法的放电段温度时间曲线图;图4是本发明的实施例中基于温度概率密度函数的电池健康状态快速评估方法的放电段温度概率密度曲线图;图5是本发明的实施例中基于温度概率密度函数的电池健康状态快速评估方法的放电段温度概率密度特征峰值与soh拟合曲线关系示意图。具体实施方式为了使本发明实现的技术手段与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。对于并联电芯而言,尽管它们之间是有区别的,soh值是不一样的,但测得的电压是一样的,不容易区分,而并联电芯之间的发热量是不一样的,进而测得的温度也是不一样的,因此,本发明提供了一种基于温度概率密度函数的电池健康状态快速评估方法,能够通过温度概率密度和soh值之间的关系,从而实现对于并联电芯soh值的快速评估。如图1和图2所示,本发明的一种基于温度概率密度函数的电池健康状态快速评估方法,用于快速评估并联电芯soh值,包括如下步骤:步骤1,采集在电池在充放电过程中不同时刻的充放电温度数据。本发明中,采用电池管理系统的热电偶自动采集不同时刻的所述充放电温度数据。步骤2,将所述电池充放电温度数据转化成概率密度曲线即pdf曲线,从而得到温度的概率密度图。本实施例中,采用matlab统计工具箱中的ksdensity函数(pdf,probabilitydensityfunction)将所述电池充放电温度数据转化成所述pdf曲线。步骤3,在pdf曲线中查找特征温度下的特征峰峰高。步骤4,对不同可用容量的电池样本进行容量标定,计算上述不同可用容量的所述电池样本的soh,同时重复步骤1-步骤3,得到上述不同可用容量的所述电池样本的soh对应的特征峰峰高。本实施例中,soh的计算公式如下:步骤5,通过步骤3和步骤4得到数据作特征峰峰高-soh拟合曲线。步骤6,选定n个需要进行评估的电池样本,而后重复步骤1-步骤4,得到需要进行评估的所述电池样本的soh对应的特征峰峰高,再根据所述步骤5中的所述特征峰峰高-soh拟合曲线查找特征峰峰高所对应的电池soh值,从而实现电池健康状态的快速评估。实施例:本实施例中待测电池均为特斯拉车用退役锂电池panasonicncr21700a,具有nca阴极,硅碳阳极,标称容量为5000mah,实际应用中并不局限于此,还可以选用钴酸锂、磷酸铁锂、锰酸锂等材料为正极,以石墨、钛酸锂等任何材料为负极的电池。步骤1,温度数据采集。在电池运行过程中,电池管理系统自动采集不同时刻的温度,获得温度时间曲线,如附图3所示。本实施例中只需利用到充/放电过程中的温度数据即可。在本实施例中采用了放电段数据进行数据分析处理,附图说明也均基于放电段数据。步骤2,pdf数据处理。使用matlab统计工具箱中ksdensity函数可将电池放电过程中的温度数据转化成pdf曲线,从而得到温度的概率密度图,如图4所示。步骤3,确定特征峰。对得到的pdf图进行分析,发现pdf曲线在温度区间[27.8,28.2]内的①号峰随着电池容量的衰减呈现出规律的变化,温度的单位为℃。特征峰的峰高度随着电池健康状态的增加逐渐降低,因此,在本实验中我们把在温度区间[27.8,28.2]内的①号峰确定为特征峰,温度的单位为℃。求取4个样本电池概率密度函数特征峰对应的峰高度,1#,2#,3#,4#电池的峰高度分别为0.7429,0.4582,0.3407,0.3333。步骤4,样本电池容量标定。对样本电池进行容量标定,并计算其soh,可用容量的测量步骤参考gbt31484-2015电动汽车动力蓄电池循环测试标准:(1)以1/2c恒流恒压充电到企业规定上限截至条件;(2)静止30min;(3)以1/2c恒流放电到企业规定下限截至条件;(4)静止30min。以放电容量为可用容量。测试了4个不同容量的电池,分别标记为1#、2#、3#、4#,它们的可用容量分别是3.97ah,4.32ah,4.40ah,4.46ah。步骤5,建立快速评估模型。通过分析发现pdf曲线中特征峰峰高与电池的soh之间具有很好的负相关关系,如图5所示。因此可以用温度pdf曲线中特征峰高度作为该电池soh的快速评估指标,通过它们的负相关关系可快速检测待测电池的soh值。表1列举了建模样本电池的健康状态、特征温度和对应的特征峰高度等数据。表1建模样本电池健康状态相关数据列表步骤6,快速评估,选定待评估的电池样本,通过电池管理系统采集到的放电过程中的温度时间曲线,由步骤2中将温度数据转化成pdf曲线,根据步骤3确定该待测电池特征峰并求取其高度值,再根据步骤5中已建立好的评估模型进行比对,从而快速得到待评估电池的健康状态soh值。表2随机抽查的待测电池soh值评估结果电池编号12#23#35#88#实测soh/%78.882.788.083.3预测soh/%80.185.288.982.7估计误差/%1.653.021.02-0.72实施例的作用与效果根据实施例以及表2可知,采用实施例中建立的评估模型对待测电池的soh值进行评估,由表2可知,估计误差最大为3.02%,因此,可知采用该模型对待测电池soh值的估计误差小,可靠性高。根据本发明所涉及的基于温度概率密度函数的电池健康状态快速评估方法,使用概率密度函数可以基于电池内部机理实现对于电池健康状态的实时估计,并且与现有的方法相比,基于温度数据的pdf评估技术避免了噪声处理,节省了计算成本和时间。此外,本发明采用热电偶实时采集电池温度数据传输到电池管理系统,实现对每个电池的精准监测,准确识别出“短板”电芯,特别是并联的短板电芯,进而对电池系统的运行策略提供指导,方便快捷,更加精准,可靠性更高;并且建模后只需要获取特征温度区间内的充放电温度数据片段即可对电池健康状态进行在线实时评估,简单快速,还适用于不同级别如单体、模组或系统等的电池健康状态评估,适用性更强。上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。当前第1页1 2 3 
技术特征:1.一种基于温度概率密度函数的电池健康状态快速评估方法,其特征在于,包括如下步骤:
步骤1,采集在电池在充放电过程中不同时刻的充放电温度数据;
步骤2,将所述电池充放电温度数据转化成概率密度曲线即pdf曲线,从而得到温度的概率密度图;
步骤3,在所述pdf曲线中查找特征温度下的特征峰峰高;
步骤4,对不同可用容量的电池样本进行容量标定,计算上述不同可用容量的所述电池样本的soh,同时重复步骤1-步骤3,得到上述不同可用容量的所述电池样本的soh对应的特征峰峰高;
步骤5,通过步骤3和步骤4得到数据作特征峰峰高-soh拟合曲线;
步骤6,选定n个需要进行评估的电池样本,而后重复步骤1-步骤4,得到需要进行评估的所述电池样本的soh对应的特征峰峰高,再根据所述步骤5中的所述特征峰峰高-soh拟合曲线查找所述特征峰峰高所对应的电池soh值,从而实现电池健康状态的快速评估。
2.根据权利要求1所述的基于温度概率密度函数的电池健康状态快速评估方法,其特征在于:
其中,所述步骤1中,采用电池管理系统的热电偶自动采集不同时刻的所述充放电温度数据。
3.根据权利要求1所述的基于温度概率密度函数的电池健康状态快速评估方法,其特征在于:
其中,所述步骤2中,采用matlab统计工具箱中的ksdensity函数将所述电池充放电温度数据转化成所述pdf曲线。
4.根据权利要求1所述的基于温度概率密度函数的电池健康状态快速评估方法,其特征在于:
其中,所述步骤4中,soh的计算公式如下:
技术总结本发明提供一种基于温度概率密度函数的电池健康状态快速评估方法,包括:步骤1,采集在电池在充放电过程中不同时刻的充放电温度数据;步骤2,将电池充放电温度数据转化成PDF曲线;步骤3,在PDF曲线中查找特征温度下的特征峰峰高;步骤4,对不同可用容量的电池样本进行容量标定,计算上述不同可用容量的电池样本的SOH,同时重复步骤1‑3,得到上述不同可用容量的电池样本的SOH对应的特征峰峰高;步骤5,通过步骤3‑4得到数据作特征峰峰高‑SOH拟合曲线;步骤6,选定n个待评估电池样本,而后重复步骤1‑步骤4,得到待评估电池样本的SOH对应的特征峰峰高,再根据步骤5中的拟合曲线查找该特征峰峰高所对应的电池SOH值,从而实现电池健康状态的快速评估。
技术研发人员:廖强强;刘翠翠;陈建宏;张启超;师雅斐;马霖睿;黄绍唐;高泽松;沈建佳;周豪磊
受保护的技术使用者:上海电力大学
技术研发日:2020.11.19
技术公布日:2021.03.12