一种电阻率法计算动态含水量方法与流程

    专利2022-07-09  94


    本发明涉及隧道工程技术领域,具体为一种电阻率法计算动态含水量方法。



    背景技术:

    隧道是修建在地下或水下或者在山体中,铺设铁路或修筑公路供机动车辆通行的建筑物。根据其所在位置可分为山岭隧道、水下隧道和城市隧道三大类。为缩短距离和避免大坡道而从山岭或丘陵下穿越的称为山岭隧道;为穿越河流或海峡而从河下或海底通过的称为水下隧道;为适应铁路通过大城市的需要而在城市地下穿越的称为城市隧道。这三类隧道中修建最多的是山岭隧道。

    电阻率法利用地壳中不同岩石间导电性(以电阻率表示)的差异,通过观测与研究在地下人工建立的稳定电流场的分布规律,来寻找煤和其它有益矿产和地下水,以及解决有关地质问题的一种电法勘探方法。电阻率法是电法勘探中研究应用最早、使用最广泛的方法。早在20世纪20年代,法国c.施伦贝格和m.施伦贝格(c.&m.schlum-berger)兄弟首先研究和试验了这一方法。后来,随着仪器的不断更新,方法理论和技术的不断完善,逐渐衍生出多种分支方法在世界很多国家的众多领域内得到广泛应用。

    在利用电阻率法对底壳中动态含水量的计算程度相对较差,无法降低因电极设置引起的干扰和故障,增大了测量误差,在处理电阻率断面图会明显呈现出高阻和低阻晕圈时,会产生盲目性,且无法准确反映目标的分布情况,也不能很好地反映不良地质体的形态、规模和埋深情况,为此我们提出一种电阻率法计算动态含水量方法。



    技术实现要素:

    针对现有技术的不足,本发明提供了一种电阻率法计算动态含水量方法,有助于减少因电极设置引起的干扰和故障,减小测量误差,提高数据采集效率,还可以减小人工操作造成的误差,可以对资料进行预处理并显示剖面曲线形态,在电阻率断面图会明显呈现出高阻和低阻晕圈,结合地质资料和钻孔资料能够很好地找出塌陷和岩溶发育区的位置,处理这些问题不会产生盲目性,达到勘探的目的,能够准确反映目标的分布情况,很好地反映不良地质体的形态、规模和埋深情况等优点,解决了在利用电阻率法对底壳中动态含水量的计算程度相对较差,无法降低因电极设置引起的干扰和故障,增大了测量误差,在处理电阻率断面图会明显呈现出高阻和低阻晕圈时,会产生盲目性,且无法准确反映目标的分布情况,也不能很好地反映不良地质体的形态、规模和埋深情况的问题。

    为实现上述有助于减少因电极设置引起的干扰和故障,减小测量误差,提高数据采集效率,还可以减小人工操作造成的误差,可以对资料进行预处理并显示剖面曲线形态,在电阻率断面图会明显呈现出高阻和低阻晕圈,结合地质资料和钻孔资料能够很好地找出塌陷和岩溶发育区的位置,处理这些问题不会产生盲目性,达到勘探的目的,能够准确反映目标的分布情况,很好地反映不良地质体的形态、规模和埋深情况的目的,本发明提供如下技术方案:一种电阻率法计算动态含水量方法,包括以下步骤:

    步骤一、首先在地面打入两个或两组铁质的供电电极a、b,用干电池或蓄电池作供电电源向地下供电;

    步骤二、然后在地下建立稳定电流场,用仪器观测出供电电流强度i,再将两个或两组铜质测量电极m、n打入地面,利用电测仪器测量mn电极间的电位差和ab回路中的供电电流,从而达到测量电阻率的目的,其公式如下;△uabn=uab-uab;

    步骤三、通过在地面设置不同的电极的排列方式,来达到测深和剖面的目的,高密度电阻率法常用的排列装置有a排列、0排列和7排列方式,都是四极排列,a装置采用的是对称四极装置方式,当am=mn—nb—△r时,其表示为:p=ka△r;

    步骤四、对步骤二和步骤三的数据进行整理,并用微型计算机进行正、反演处理解释,绘制成各种解释图件,再结合工作区及邻区已有的各种地质、物探资料,进行综合分析研究;

    步骤五、根据各种解释图件与工作区及邻区已有的各种地质、物探资料,进行综合分析研究,最终得出电阻率法计算出地质动态含水量。

    优选的,所述电阻率法实行密集采样来提高采样率,用“多次覆盖”的方法来提高信噪比。

    优选的,所述利用高密度电阻率法对明山隧道进行探测,对明山隧道可能存在的隐伏不良地质体设置两条主剖面,分别位于隧道的左右两侧,在异常区设置了几条横剖面,能更好地圈定异常。

    优选的,所述电阻率法采集的数据经过圆滑处理后,输入计算机进行二维、三维反演后获得地电断面信息,数据圆滑处理一般采用坏点剔除和滑动平均。

    优选的,所述公式(3)中的k为电极排列系数。

    优选的,所述电阻率法按电极排列方式和工作方法可分为电阻率测深法和电阻率剖面法。

    优选的,所述电测深法是固定测量电极距,由小到大改变供电电极距,用以研究测点下和测区下不同导电性地质体从浅到深的垂向分布情况。

    优选的,所述电剖面法是使供电电极和测量电极的电极距都固定不变,整个装置沿测线朝一个方向移动,在不同测点上进行观测。

    优选的,所述数据圆滑处理之前还包括数据预处理,具体步骤如下:

    步骤a1,获取电阻率法采集的数据,记为a,可表示为:

    a={a1,a2,…,an}

    其中,ai代表电阻率法采集的第i个数据,i的取值为从1到n,n为电阻率法采集的数据数目;

    步骤a2,根据以下公式计算所述数据的范数:

    其中,lp代表所述数据的范数,p为预设参数;

    步骤a3,根据以下公式得到预处理后的数据集:

    其中,b代表预处理后的新数据集,新数据集b中的数据为预处理后的数据。

    与现有技术相比,本发明提供了一种电阻率法计算动态含水量方法,具备以下有益效果:

    1、该电阻率法计算动态含水量方法,通过该高密度电阻率法,使得电极布设一次性完成,有助于减少因电极设置引起的干扰和故障,减小测量误差;通过转换电极排列方式可获得丰富的地电断面信息;采用自动化的数据采集方式,不仅可以提高数据采集效率,还可以减小人工操作造成的误差;可以对资料进行预处理并显示剖面曲线形态。

    2、该电阻率法计算动态含水量方法,通过高密电阻率法在探测塌陷和岩溶发育区时,由于覆盖层与基岩的电性差别大,在电阻率断面图会明显呈现出高阻和低阻晕圈,结合地质资料和钻孔资料能够很好地找出塌陷和岩溶发育区的位置,处理这些问题不会产生盲目性,达到勘探的目的。

    3、该电阻率法计算动态含水量方法,通过密度电阻率法是探测塌陷和岩溶发育区的有效方法之一,实测结果反演断面图,能够准确反映目标的分布情况,很好地反映不良地质体的形态、规模和埋深情况。

    4、该电阻率法计算动态含水量方法,通过采用在地面设置不同的电极的排列方式,能分别测量出不同地质的含水量,相比于现有的方法本发明得到的结果能使技术人员针对该方法所用设备进行更好的维护,测量结果的针对性更强。

    附图说明

    图1为本发明电极排列方式图;

    图2为本发明温纳a装置测点分布示意图;

    图3为本发明公式△uabn=uab-uab的延伸公式图。

    具体实施方式

    下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

    请参阅图1-3,一种电阻率法计算动态含水量方法,包括以下步骤:

    步骤一、首先在地面打入两个或两组铁质的供电电极a、b,用干电池或蓄电池作供电电源向地下供电;

    步骤二、然后在地下建立稳定电流场,用仪器观测出供电电流强度i,再将两个或两组铜质测量电极m、n打入地面,利用电测仪器测量mn电极间的电位差和ab回路中的供电电流,从而达到测量电阻率的目的,其公式如下;△uabn=uab-uab;

    步骤三、通过在地面设置不同的电极的排列方式,来达到测深和剖面的目的,高密度电阻率法常用的排列装置有a排列、0排列和7排列方式,都是四极排列,a装置采用的是对称四极装置方式,当am=mn—nb—△r时,其表示为:p=ka△r;

    步骤四、对步骤二和步骤三的数据进行整理,并用微型计算机进行正、反演处理解释,绘制成各种解释图件,再结合工作区及邻区已有的各种地质、物探资料,进行综合分析研究;

    步骤五、根据各种解释图件与工作区及邻区已有的各种地质、物探资料,进行综合分析研究,最终得出电阻率法计算出地质动态含水量。

    其中探测结果的判释原则:①基本原则是不同物性差异的岩体,其电阻率不同;②完整性好、强度大的岩体,其电阻率相对较高;③当岩体破碎、完整性差时,其电阻率值完整性好,强度大的岩体电阻率更高;④当岩体中存在大型裂缝或空洞时,出现特别明显的高阻区;⑤当岩体裂隙间充填黏土或含水,电阻率值降低;⑥充填型溶洞,特别是黏土充填溶洞,出现低电阻率值异常区;⑦地表黏土或含水块、碎石土,电阻率值偏低。

    电阻率法实行密集采样来提高采样率,用“多次覆盖”的方法来提高信噪比(多次覆盖是指由不同的供电电极、不同的测量电极在地电断面上相同的“点”进行多次测量);利用高密度电阻率法对明山隧道进行探测,对明山隧道可能存在的隐伏不良地质体设置两条主剖面,分别位于隧道的左右两侧,在异常区设置了几条横剖面,能更好地圈定异常;电阻率法采集的数据经过圆滑处理后,输入计算机进行二维、三维反演后获得地电断面信息,数据圆滑处理一般采用坏点剔除和滑动平均;公式(3)中的k为电极排列系数(或装置系数);电阻率法按电极排列方式和工作方法可分为电阻率测深法(简称电测深法)和电阻率剖面法(简称电剖面法);电测深法是固定测量电极距,由小到大改变供电电极距,用以研究测点下和测区下不同导电性地质体从浅到深的垂向分布情况;电剖面法是使供电电极和测量电极的电极距都固定不变,整个装置沿测线朝一个方向移动,在不同测点上进行观测。

    综上所述,由于测量区域的地形起伏较大,地形的变化影响着测量结果,在反演断面图中使得异常体与实际目标体位置发生差异,因此在对数据的处理时,必须进行地形校正,从而能更好地进行解释。

    高密度电阻率法也存在一些不足,如探测深度一直是这种方法的主要瓶颈,而解决的办法主要是加大排列的长度和加大供电电流的大小,但实际应用的排列长度和供电电流大小有限,因此能解决的地质问题有限。

    数据圆滑处理之前还包括数据预处理,具体步骤如下:

    步骤a1,获取电阻率法采集的数据,记为a,可表示为:

    a={a1,a2,…,an}

    其中,ai代表电阻率法采集的第i个数据,i的取值为从1到n,n为电阻率法采集的数据数目;

    步骤a2,根据以下公式计算所述数据的范数:

    其中,lp代表所述数据的范数,p为预设参数,p的取值范围为(0, ∞),在这里取2;

    步骤a3,根据以下公式得到预处理后的数据集:

    其中,b代表预处理后的新数据集,新数据集b中的数据为预处理后的数据。

    有益效果:通过电阻率法采集的初始数据存在大量的数据缺失及噪声,通过以上技术对电阻率采集的数据首先进行数据预处理,从而使初始数据进行了增强操作,进而对其缺失值及噪声起到了抑制的作用,从而保证了数据的完整性,最终将预处理后的数据进行圆滑处理,从而加快了计算速度,去除了一些冗余的数据,减少过拟合,便于挖掘数据,提高了后期在输入数据的精度,提升了数据的处理速度,进而达到了对数据的整理,减少数据拥堵造成数据损伤的可能性,有效的保证了数据的安全性,以述技术全部为计算机自动检测和计算,不需要额外的增加人工维护,从而大幅度的提高了数据处理的智能化水平。

    需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

    尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。


    技术特征:

    1.一种电阻率法计算动态含水量方法,其特征在于,包括以下步骤:

    步骤一、首先在地面打入两个或两组铁质的供电电极a、b,用干电池或蓄电池作供电电源向地下供电;

    步骤二、然后在地下建立稳定电流场,用仪器观测出供电电流强度i,再将两个或两组铜质测量电极m、n打入地面,利用电测仪器测量mn电极间的电位差和ab回路中的供电电流,从而达到测量电阻率的目的,其公式如下;△uabn=uab1-uab0,所述△uabn即为ab两点的电位差,uab1为插入电极m、n的电位差,uab0为插入电极m、n的电位差之前的电位差;

    步骤三、通过在地面设置不同的电极的排列方式,来达到测深和剖面的目的,高密度电阻率法常用的排列装置有a排列、0排列和7排列方式,都是四极排列,a装置采用的是对称四极装置方式,根据数据公式可以计算高密度电阻率,其中p为高密度电阻率,当am=mn—nb—△r时,其表示为:p=ka△r;

    步骤四、对步骤二和步骤三的数据进行整理,并用微型计算机进行正、反演处理解释,绘制成各种解释图件,再结合工作区及邻区已有的各种地质、物探资料,进行综合分析研究;

    步骤五、根据各种解释图件与工作区及邻区已有的各种地质、物探资料,进行综合分析研究,最终得出电阻率法计算出地质动态含水量。

    2.根据权利要求1所述的一种电阻率法计算动态含水量方法,其特征在于:所述电阻率法实行密集采样来提高采样率,用“多次覆盖”的方法来提高信噪比。

    3.根据权利要求1所述的一种电阻率法计算动态含水量方法,其特征在于:所述利用高密度电阻率法对明山隧道进行探测,对明山隧道可能存在的隐伏不良地质体设置两条主剖面,分别位于隧道的左右两侧,在异常区设置了几条横剖面,能更好地圈定异常。

    4.根据权利要求1所述的一种电阻率法计算动态含水量方法,其特征在于:所述电阻率法采集的数据经过圆滑处理后,输入计算机进行二维、三维反演后获得地电断面信息,数据圆滑处理一般采用坏点剔除和滑动平均。

    5.根据权利要求1所述的一种电阻率法计算动态含水量方法,其特征在于:所述公式(3)中的k为电极排列系数。

    6.根据权利要求1所述的一种电阻率法计算动态含水量方法,其特征在于:所述电阻率法按电极排列方式和工作方法可分为电阻率测深法和电阻率剖面法。

    7.根据权利要求6所述的一种电阻率法计算动态含水量方法,其特征在于:所述电测深法是固定测量电极距,由小到大改变供电电极距,用以研究测点下和测区下不同导电性地质体从浅到深的垂向分布情况。

    8.根据权利要求6所述的一种电阻率法计算动态含水量方法,其特征在于:所述电剖面法是使供电电极和测量电极的电极距都固定不变,整个装置沿测线朝一个方向移动,在不同测点上进行观测。

    9.根据权利要求4所述的一种电阻率法计算动态含水量方法,其特征在于:所述数据圆滑处理之前还包括数据预处理,具体步骤如下:

    步骤a1,获取电阻率法采集的数据,记为a,可表示为:

    a={a1,a2,…,an}

    其中,ai代表电阻率法采集的第i个数据,i的取值为从1到n,n为电阻率法采集的数据数目;

    步骤a2,根据以下公式计算所述数据的范数:

    其中,lp代表所述数据的范数,p为预设参数;

    步骤a3,根据以下公式得到预处理后的数据集:

    其中,b代表预处理后的新数据集,新数据集b中的数据为预处理后的数据。

    技术总结
    本发明涉及隧道工程技术领域,且公开了一种电阻率法计算动态含水量方法,包括以下步骤:S1、在地面打入两个或两组铁质的供电电极A、B,用干电池或蓄电池作供电电源向地下供电;S2、在地下建立稳定电流场,用仪器观测出供电电流强度I,再将两个或两组铜质测量电极M、N打入地面;S3、通过设置不同的电极的排列方式,来达到测深和剖面的目的;S4、对原始曲线进行室内整理;S5、最终得出电阻率法计算出地质动态含水量。该电阻率法计算动态含水量方法,有助于减少因电极设置引起的干扰和故障,可以对资料进行预处理并显示剖面曲线形态,处理问题不会产生盲目性,达到勘探的目的,能够准确反映目标的分布情况。

    技术研发人员:雒岚;查小林;周建刚;高军;曾霖;吴金国;姚佳
    受保护的技术使用者:中铁四局集团第五工程有限公司
    技术研发日:2020.10.15
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-25008.html

    最新回复(0)