一种电光调制器的制作方法

    专利2022-07-08  178


    本申请涉及光通信技术领域,尤其涉及一种电光调制器。



    背景技术:

    目前的光调制系统一般由驱动器和调制器构成,行波电极调制器由于具有可得到较高消光比与较易集成的特点而得到广泛应用。行波电极调制器,按照驱动方式分有单极驱动和双极驱动方式,按照光波导的排布方式还有串联推挽式结构和分离双臂式等结构。一般的行波电极调制系统主要由驱动器20和行波电极调制器10构成,如图1所示,其中,行波电极调制器10的截面示意如图2所示。

    其工作原理为:driver(驱动器20)经过键合引线连接到行波电极调制器10,光波导130放置于调制电极120电场中,由driver端输出高速数字信号,数字信号到达行波电极调制器10,沿调制电极120传播,光波在光波导130中传播,调制电极120中高速数字信号的所带来的电场变化会使光波导130的有效折射率发生变化。因此当高速数字信号在调制电极120上传播时,高速数字信号的电场使光波导130的折射率发生变化,从而使光波的相位发生变化,使光波携带上数字信号信息,光波在后端的马赫增德尔干涉仪中干涉,从而完成调制。

    实际使用中,整个行波电极调制器芯片一般为完整的四通道、八通道或者更多的通道,通道越多,各通道之间的间距就越小,芯片上各个通道之间就会存在串扰。如图3所示,为使用时行波电极调制器内的电磁场辐射示意图,电光调制器安装在一热沉上,即芯片的基板110下面会有热沉垫片,通常为金属垫片,同时也作为金属接地层30。信号电极121的电磁场150会向自由空间辐射,这些辐射会导致电磁辐射问题,有一部分电磁场150还会耦合到相邻的通道造成串扰,串扰会造成信号产生噪声,最终影响链路的误码率,而且driver输出的共模电压也会造成行调制器芯片端调制电极电磁辐射较大,导致模块认证失败等问题。



    技术实现要素:

    本申请的目的在于提供一种电光调制器,具有电磁屏蔽结构,可对光调制器上各通道间的串扰进行有效隔离,同时解决了行波电极电磁辐射大的问题。

    为了实现上述目的之一,本申请提供了一种电光调制器,包括基板、至少一组调制电极,以及设于所述基板内的光波导;

    所述一组调制电极至少包括一个接地电极和一个信号电极;所述信号电极用于传输电信号,所述电信号用于调制所述光波导内传输的光信号;其特征在于:

    还包括电磁屏蔽结构;所述电磁屏蔽结构包括覆盖于所述调制电极上方的上屏蔽部,以及设于所述一组调制电极两侧的侧屏蔽部;所述侧屏蔽部至少部分深入所述基板,以将相邻的两组所述调制电极相隔离。

    作为实施方式的进一步改进,所述基板包括衬底层、绝缘层和顶层硅,所述光波导位于所述顶层硅处;所述侧屏蔽部深入至所述衬底层内。

    作为实施方式的进一步改进,所述侧屏蔽部贯穿所述衬底层的上下表面。

    作为实施方式的进一步改进,所述衬底层底部设有金属接地层,所述侧屏蔽部贯穿所述衬底层与所述金属接地层相电性连接。

    作为实施方式的进一步改进,所述电磁屏蔽结构与所述接地电极相电性连接。

    作为实施方式的进一步改进,所述上屏蔽部包括一盖板,所述侧屏蔽部包括多个立板,各所述立板分别设于相邻的各组调制电极之间;多个所述立板与所述盖板连接在一起形成多个连接的截面为类n型的结构,或者多个所述立板与所述盖板一体成型形成多个连接的截面为类n型的结构。

    作为实施方式的进一步改进,所述盖板和所述立板均为金属板。

    作为实施方式的进一步改进,所述一组调制电极为gs电极、gsg电极或gssg电极。

    作为实施方式的进一步改进,所述调制电极与所述上屏蔽部之间设有电介质层。

    作为实施方式的进一步改进,所述电介质层的电介质具有使得所述调制电极中的电磁波速度与所述光波导的光波速度相匹配的有效介电常数。

    本申请的有益效果:增加了电磁屏蔽结构,可以有效隔离电光调制器各通道间的串扰,还可屏蔽行波电极的电磁辐射,解决了行波电极电磁辐射大的问题;(2)在屏蔽结构与调制电极之间填充合适介电常数的电介质,可使得调制电极周围介质的有效介电常数与光波导的有效折射率相匹配,从而使得电磁波的传播速度与光波的传播速度一致,达到完全匹配,以提高电光调制器的调制带宽和调制性能。

    附图说明

    图1为常用技术中行波电极调制系统示意图;

    图2为常用技术中行波电极调制器横截面示意图;

    图3为常用技术中行波电极调制器内的电磁场示意图;

    图4为本申请电光调制器实施例1结构示意图;

    图5为本申请电光调制器实施例2结构示意图;

    图6为本申请电光调制器实施例3结构示意图;

    图7为本申请电光调制器实施例4结构示意图。

    附图标记:

    具体实施方式

    以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。

    在本申请的各个图示中,为了便于图示,结构或部分的某些尺寸会相对于其它结构或部分夸大,因此,仅用于图示本申请的主题的基本结构。

    另外,本文使用的例如“上”、“上方”、“下”、“下方”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的设备翻转,则被描述为位于其他单元或特征“下方”或“之下”的单元将位于其他单元或特征“上方”。因此,示例性术语“下方”可以囊括上方和下方这两种方位。设备可以以其他方式被定向(旋转90度或其他朝向),并相应地解释本文使用的与空间相关的描述语。当元件或层被称为在另一部件或层“上”、与另一部件或层“连接”时,其可以直接在该另一部件或层上、连接到该另一部件或层,或者可以存在中间元件或层。

    实施例1

    如图4所示,该实施例的电光调制器包括基板110、一组调制电极,以及设于基板110内的光波导130,还有电磁屏蔽结构140。其中,一组调制电极为包括两个接地电极122和两个信号电极121的gssg行波电极,信号电极121用于传输电信号,电信号用于调制光波导130内传输的光信号。电磁屏蔽结构140包括覆盖于该组调制电极上方的上屏蔽部141,以及设于该组调制电极两侧的侧屏蔽部142,该侧屏蔽部142至少部分深入基板110,以将相邻的两组调制电极相隔离。该实施例中,基板110采用的是绝缘体上硅(silicononisolator,soi)结构,包括衬底层111、绝缘层112和顶层硅113,光波导130位于顶层硅113处,即在顶层硅113处通过刻蚀、离子注入等半导体工艺制作出光波导130及其两侧的接触区域。在顶层硅113上通过交替沉积金属与介质形成第一电介质层114和导电过孔,最后通过沉积金属形成调制电极,调制电极的接地电极122和信号电极121分别通过导电过孔与光波导130两侧的接触区域相电性连接。

    该实施例中,电磁屏蔽结构140的侧屏蔽部142深入至衬底层111内,电磁屏蔽结构140的上屏蔽部141或侧屏蔽部142与接地电极122相电性连接,如可通过金线或导电过孔等方式实现电磁屏蔽结构140与接地电极122的电性连接。电磁屏蔽结构140的上屏蔽部141包括一盖板,侧屏蔽部142包括分别设于一组调制电极两侧的两个立板。两个立板与盖板固接在一起形成截面为类n型结构的屏蔽罩,将调制电极及相应的光波导罩在里面,两个立板深入至衬底层111内,不仅屏蔽了调制电极附近的电磁辐射,还能屏蔽入射到衬底层111内的电磁辐射,解决了调制电极电磁辐射大的问题,对相邻两组调制电极之间的电磁辐射具有更好的屏蔽作用,更能有效地减少相邻通道间的串扰。这里,盖板和立板均为金属板,如铜板或铝板等,二者可以通过焊接固定在一起,也可以通过压铸等金属加工工艺一体成型。制作时,可以采用深刻蚀硅孔(dsv,deepsiliconvia)工艺在基板上制作深硅孔,在衬底层上形成约100微米到200微米的孔,再将电磁屏蔽结构的侧屏蔽部插入到该孔内,利用胶水等粘合剂粘合固定,以阻挡电磁波向外辐射,起到屏蔽电磁辐射的作用。

    为了进一步提高电光调制器的调制带宽和调制性能,该实施例中,在电磁屏蔽结构140与调制电极之间采用了合适介电常数的电介质,即第二电介质层160,以使得调制电极周围介质的有效介电常数与光波导的有效折射率相匹配,从而使得电磁波的传播速度与光波的传播速度一致,达到完全匹配,避免了因电磁波与光波的传播速度失配而限制了调制带宽的问题。例如,通常情况下,调制电极的有效介电常数一般比较低,所以电磁波的传播速度会比需要调制的光波传播速度更快,从而导致电磁波和光波失配。这种情况下就可以选用介电常数比较高的电介质材料来填充调制电极与电磁屏蔽结构之间的空间,以提高调制电极周围的有效介电常数,从而使电磁波的传播速度与光波的传播速度完全一致,使二者完全匹配,以提高行电光调制器的调制带宽和调制性能。上述电介质优选二氧化硅、单晶硅、多晶硅、陶瓷或氧化铝等介电常数比较高的材料,可以通过半导体工艺沉积或生长于行波电极上,或者通过介质胶粘结于调制电极上。

    实施例2

    如图5所示,与实施例1不同的是,该实施例中,电磁屏蔽结构140的侧屏蔽部142贯穿衬底层111的上下表面。在衬底层111底部设有金属接地层30,侧屏蔽部142贯穿衬底层111与该金属接地层30相电性连接。侧屏蔽部142贯穿衬底层111,可以完全阻挡衬底层111内的电磁波向外辐射,进一步提高电磁屏蔽效果。制作时,可以采用深刻蚀通孔(tsv,throughsiliconvia)工艺在基板上制作贯穿整个芯片基板的通孔,再将电磁屏蔽结构的侧屏蔽部插入到该孔内,达到屏蔽电磁辐射的效果,有效地消除通道间的串扰。电磁屏蔽结构通过侧屏蔽部与底部的金属接地层接触连接实现二者的电性连接,达到接地的目的,链路更简洁。

    实施例3

    如图6所示,该实施例是在实施例1或2的基础上,对于具有多组调制电极的电光调制器,多组调制电极的电磁屏蔽结构140可以做成一个整体。具体的,多组调制电极的电磁屏蔽结构140的上屏蔽部141包括一盖板,侧屏蔽部142包括多个立板,各立板分别设于相邻的各组调制电极之间,多个立板与盖板固接在一起形成多个连接的截面为类n型的结构,或者多个立板与盖板一体成型形成多个连接的截面为类n型的结构。例如,在常用的四通道或八通道的电光调制器上,各通道的电磁屏蔽结构做成一个整体,结构更加紧凑,既节省了空间,也简化了制作过程。

    实施例4

    如图7所示,与上述各实施例不同的是,该实施例中的一组调制电极为包括一个信号电极121和一个接地电极122的gs行波电极。其它结构均可与上述任一实施例的结构相同,这里不再赘述。当然,在其它实施例中,调制电极也可以是包括一个信号电极和两个接地电极的gsg行波电极、“t”rails行波电极,或者其它结构的电极。

    上文所列出的一系列的详细说明仅仅是针对本申请的可行性实施方式的具体说明,它们并非用以限制本申请的保护范围,凡未脱离本申请技艺精神所作的等效实施方式或变更均应包含在本申请的保护范围之内。


    技术特征:

    1.一种电光调制器,包括基板、至少一组调制电极,以及设于所述基板内的光波导;

    所述一组调制电极至少包括一个接地电极和一个信号电极;所述信号电极用于传输电信号,所述电信号用于调制所述光波导内传输的光信号;其特征在于:还包括电磁屏蔽结构;所述电磁屏蔽结构包括覆盖于所述调制电极上方的上屏蔽部,以及设于所述一组调制电极两侧的侧屏蔽部;所述侧屏蔽部至少部分深入所述基板,以将相邻的两组所述调制电极相隔离。

    2.根据权利要求1所述的电光调制器,其特征在于:所述基板包括衬底层、绝缘层和顶层硅,所述光波导位于所述顶层硅处;所述侧屏蔽部深入至所述衬底层内。

    3.根据权利要求2所述的电光调制器,其特征在于:所述侧屏蔽部贯穿所述衬底层的上下表面。

    4.根据权利要求3所述的电光调制器,其特征在于:所述衬底层底部设有金属接地层,所述侧屏蔽部贯穿所述衬底层与所述金属接地层相电性连接。

    5.根据权利要求1-3任一项所述的电光调制器,其特征在于:所述电磁屏蔽结构与所述接地电极相电性连接。

    6.根据权利要求1-3任一项所述的电光调制器,其特征在于:所述上屏蔽部包括一盖板,所述侧屏蔽部包括多个立板,各所述立板分别设于相邻的各组调制电极之间;多个所述立板与所述盖板连接在一起形成多个连接的截面为类n型的结构,或者多个所述立板与所述盖板一体成型形成多个连接的截面为类n型的结构。

    7.根据权利要求6所述的电光调制器,其特征在于:所述盖板和所述立板均为金属板。

    8.根据权利要求1-3任一项所述的电光调制器,其特征在于:所述一组调制电极为gs电极、gsg电极或gssg电极。

    9.根据权利要求1-3任一项所述的电光调制器,其特征在于:所述调制电极与所述上屏蔽部之间设有电介质层。

    10.根据权利要求9所述的电光调制器,其特征在于:所述电介质层的电介质具有使得所述调制电极中的电磁波速度与所述光波导的光波速度相匹配的有效介电常数。

    技术总结
    本申请公开了一种电光调制器,包括基板、光波导、至少一组调制电极和电磁屏蔽结构;电磁屏蔽结构包括覆盖于所述调制电极上方的上屏蔽部,以及设于所述一组调制电极两侧的侧屏蔽部;所述侧屏蔽部至少部分深入所述基板,以将相邻的两组所述调制电极相隔离。该申请增加了电磁屏蔽结构,可以有效隔离电光调制器各通道间的串扰,还可屏蔽行波电极的电磁辐射,解决了行波电极电磁辐射大的问题;在屏蔽结构与调制电极之间填充合适介电常数的电介质,可使得调制电极周围介质的有效介电常数与光波导的有效折射率相匹配,从而使得电磁波的传播速度与光波的传播速度一致,达到完全匹配,以提高电光调制器的调制带宽和调制性能。

    技术研发人员:闫冬冬;李显尧
    受保护的技术使用者:苏州旭创科技有限公司
    技术研发日:2019.09.12
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-24791.html

    最新回复(0)