控制托盘转动的方法和装置与流程

    专利2022-07-08  67


    本发明涉及计算机技术领域,尤其涉及一种控制托盘转动的方法和装置。



    背景技术:

    现有的托盘机器人,例如自动导引运输车(agv)或叉车等仓储搬运机器人,一般在底盘上设置有托盘和车载的货架二维码扫描器,托盘的初始位置由人为摆正,在每次托盘转动之前,利用货架二维码扫描器识别车体与货架相对位置的偏差,此偏差是因增量编码器6估算位置而引入的偏差累计导致的,运动控制器将此偏差引入托盘控制算法中,以消除托盘伺服编码器偏差累计导致的货架持续偏移。

    在实现本发明过程中,发明人发现现有技术中至少存在如下问题:

    1.货架二维码扫描器无法识别托盘与货架之间的相对位置偏差,且现有托盘控制算法无法纠正和弥补,存在算法控制盲区;

    2.货架二维码扫描器的准确度与精度受工作环境影响严重,准确度和可靠性较低;

    3.对货架二维码扫描器的功能要求较高,且数据采集、发送、解析和处理等消耗的软硬件资源较多。



    技术实现要素:

    有鉴于此,本发明实施例提供一种托盘机器人以及控制托盘转动的方法和装置,能够在不需要货架二维码识别货架位置偏差的同时,保证托盘与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘转动的准确性和可靠性,同时降低托盘机器人成本。

    为实现上述目的,根据本发明实施例的一个方面,提供了一种控制托盘转动的方法。

    本发明实施例的一种控制托盘转动的方法,应用于本发明实施例的托盘机器人,所述托盘机器人包括底盘、托盘、设置于所述底盘上的零点限位开关、增量编码器和控制部,托盘上设置有至少两组由两个零点孔组成的零点位,所述控制部的零点标志位记录有在所述托盘转动过程中所述零点限位开关与所述零点孔的重合次数以及所述托盘的位置状态,所述方法包括:获取所述托盘的目标转动角度;基于所述增量编码器确定所述托盘的已转动角度;根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘的剩余转动角度。

    可选地,根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘的剩余转动角度,包括:根据所述目标转动角度和所述已转动角度计算所述托盘的预测剩余角度;读取所述控制部的零点标志位,基于所述零点标志位修正所述预测剩余角度,得到所述托盘的剩余转动角度。

    可选地,读取所述控制部的零点标志位,基于所述零点标志位修正所述预测剩余角度,得到所述托盘的剩余转动角度,包括:读取所述控制部的零点标志位,得到所述重合次数和所述托盘的位置状态;根据所述重合次数和所述已转动角度修正所述预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度;或根据所述重合次数和所述托盘的位置状态修正所述托盘的预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度。

    可选地,根据所述重合次数和所述已转动角度修正所述预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度,包括:

    若重合次数为0,则θ2=θ1-θok,将所述目标转动角度的值更新为所述剩余转动角度的值;

    若重合次数为1,则获取所述已转动角度,

    当所述已转动角度大于零点相邻角的一半时,θ2=θ1-(a-b/2),将所述托盘的位置状态更新为第一状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述已转动角度小于或等于零点相邻角的一半时,θ2=θ1-(b/2),将所述托盘的位置状态更新为第二状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    其中,θ2是所述剩余转动角度;θ1是所述目标转动角度;θok是所述已转动角度;a是所述零点相邻角,所述零点相邻角是相邻的两个所述零点位的中线的夹角;b是所述零点内角,所述零点内角是同一所述零点位的两个零点孔的圆心角。

    可选地,根据所述重合次数、所述已转动角度和所述托盘的位置状态修正所述托盘的预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度,包括:

    若重合次数大于或等于2,则获取最新两次重合对应的所述零点孔的圆心角,

    当所述最新两次重合对应的所述零点孔的圆心角大于零点内角时,θ2=θ1-(a-b),将所述托盘的位置状态更新为第五状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述最新两次重合对应的所述零点孔的圆心角等于零点内角时,查询所述托盘的位置状态,

    如果所述托盘的位置状态为第二状态,θ2=θ1,将所述托盘的位置状态更新为第四状态,将所述目标转动角度的值更新为所述剩余转动角度的值,

    如果所述托盘的位置状态为第一状态、第二状态、第三状态或第五状态,θ2=θ1-b,将所述托盘的位置状态更新为第三状态,将所述目标转动角度的值更新为所述剩余转动角度的值。

    可选地,还包括:控制所述托盘转动到归零位置;其中,所述归零位置为所述托盘处于所述零点限位开关位于其中一组所述零点位的中线的位置。

    为实现上述目的,根据本发明实施例的另一方面,提供了一种控制托盘转动的装置。

    本发明实施例的一种控制托盘转动的装置包括:获取模块,用于获取所述托盘的目标转动角度;确定模块,用于基于所述增量编码器确定所述托盘的已转动角度;计算模块,用于根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘的剩余转动角度。

    可选地,所述计算模块还用于:根据所述目标转动角度和所述已转动角度计算所述托盘的预测剩余角度;读取所述控制部的零点标志位,基于所述零点标志位修正所述预测剩余角度,得到所述托盘的剩余转动角度。

    可选地,所述计算模块进一步用于:读取所述控制部的零点标志位,得到所述重合次数和所述托盘的位置状态;根据所述重合次数和所述已转动角度修正所述预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度;或根据所述重合次数和所述托盘的位置状态修正所述托盘的预测剩余角度,得到所述托盘的剩余转动角度,并更新所述托盘的位置状态以及所述目标转动角度。

    可选地,所述计算模块进一步用于:

    若重合次数为0,则θ2=θ1-θok,将所述目标转动角度的值更新为所述剩余转动角度的值;

    若重合次数为1,则获取所述已转动角度,

    当所述已转动角度大于零点相邻角的一半时,θ2=θ1-(a-b/2),将所述托盘的位置状态更新为第一状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述已转动角度小于或等于零点相邻角的一半时,θ2=θ1-(b/2),将所述托盘的位置状态更新为第二状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    其中,θ2是所述剩余转动角度;θ1是所述目标转动角度;θok是所述已转动角度;a是所述零点相邻角,所述零点相邻角是相邻的两个所述零点位的中线的夹角;b是所述零点内角,所述零点内角是同一所述零点位的两个零点孔的圆心角。

    可选地,所述计算模块进一步用于:

    若重合次数大于或等于2,则获取最新两次重合对应的所述零点孔的圆心角,

    当所述最新两次重合对应的所述零点孔的圆心角大于零点内角时,θ2=θ1-(a-b),将所述托盘的位置状态更新为第五状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述最新两次重合对应的所述零点孔的圆心角等于零点内角时,查询所述托盘的位置状态,

    如果所述托盘的位置状态为第二状态,θ2=θ1,将所述托盘的位置状态更新为第四状态,将所述目标转动角度的值更新为所述剩余转动角度的值,

    如果所述托盘的位置状态为第一状态、第二状态、第三状态或第五状态,θ2=θ1-b,将所述托盘的位置状态更新为第三状态,将所述目标转动角度的值更新为所述剩余转动角度的值。

    可选地,还包括控制模块,用于:控制所述托盘转动到归零位置;其中,所述归零位置为所述托盘处于所述零点限位开关位于其中一组所述零点位的中线的位置。

    为实现上述目的,根据本发明实施例的又一方面,提供了一种控制托盘转动的电子设备。

    本发明实施例的一种控制托盘转动的电子设备包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明实施例的一种控制托盘转动的方法。

    为实现上述目的,根据本发明实施例的再一方面,提供了一种计算机可读存储介质。

    本发明实施例的一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现本发明实施例的一种控制托盘转动的方法。

    上述发明中的一个实施例具有如下优点或有益效果:因为采用获取所述托盘的目标转动角度;基于所述增量编码器确定所述托盘的已转动角度;根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘的剩余转动角度的技术手段,所以克服了货架二维码扫描器无法识别托盘与货架之间的相对位置偏差,且现有托盘控制算法无法纠正和弥补,存在算法控制盲区;货架二维码扫描器的准确度和可靠性较低;以及对货架二维码扫描器的功能要求较高,且数据采集、发送、解析和处理等消耗的软硬件资源较多的技术问题,进而达到在不需要货架二维码识别货架位置偏差的同时,保证托盘与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘转动的准确性和可靠性,同时降低托盘机器人成本的技术效果。

    上述的非惯用的可选方式所具有的进一步效果将在下文中结合具体实施方式加以说明。

    附图说明

    附图用于更好地理解本发明,不构成对本发明的不当限定。其中:

    图1是根据本发明实施例的一种托盘机器人的底盘的示意图一;

    图2是根据本发明实施例的一种托盘机器人的底盘的示意图二;

    图3是根据本发明实施例的一种托盘机器人的托盘的示意图;

    图4是根据本发明实施例的一种托盘机器人的托盘位于归零位置的示意图;

    图5是根据本发明实施例的控制托盘转动的方法的主要步骤的示意图;

    图6是根据本发明实施例的控制托盘转动的方法的托盘转动过程中的位置示意图一;

    图7是根据本发明实施例的控制托盘转动的方法的托盘转动过程中的位置示意图二;

    图8是根据本发明实施例的控制托盘转动的方法的托盘转动过程中的位置示意图三;

    图9是根据本发明实施例的控制托盘转动的方法的托盘转动过程中的位置示意图四;

    图10是根据本发明实施例的控制托盘转动的装置的主要模块的示意图;

    图11是本发明实施例可以应用于其中的示例性系统架构图;

    图12是适于用来实现本发明实施例的终端设备或服务器的计算机系统的结构示意图。

    具体实施方式

    以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。

    需要指出的是,在不冲突的情况下,本发明的实施例以及实施例中的技术特征可以相互结合。

    现有的托盘机器人所采用的托盘控制算法的流程如下:

    首先,托盘机器人接收到托盘旋转指令——托盘左转/右转角度(θ0);

    其次,托盘机器人自动触发其上的货架二维码扫描器读取货架与车体的偏差角度(m),基于此计算托盘需要旋转的角度(θx):

    托盘左转,θx=θ0-m;

    托盘右转,θx=θ0 m;

    然后,根据托盘电机的实时码盘值(realplatenum)和上一个周期的码盘值(realplatenumold),实时计算托盘剩余旋转角度(θy):

    θy=θx-(realplatenum-realplatenumold);

    最后,当θ2=0时,托盘到达特定位置,托盘电机停止动作。

    现有的托盘控制算法,仅凭借电机的码盘值估算位置,属于纯软件计算,不可避免存在的计算偏差,且没有消除偏差的机制,若长期使用就会存在累计偏差。并且为了保证货架与车体的相对位置无偏差,每次托盘转动均需要触发货架二维码扫描器的扫描、数据发送与接收以及数据解析与处理,对货架二维码扫描器的功能要求较高,器件选型难度与整车成本随之大幅提升,且增加了软硬件资源的消耗;货架与车体的相对位置偏差识别的准确度与货架二维码扫描器的可靠性相关联,而货架二维码扫描器的准确度与精度受自身技术与工作环境影响严重,仓库环境的多尘以及货架的抖动均影响货架二维码扫描器,降低了识别的准确度,货架二维码扫描器的可靠性低;货架二维码扫描器搭载在底盘上,可以识别货架与底盘(即车体)的相对位置偏差,而托盘与货架之间同样存在相对位置偏差,这是货架二维码扫描器无法识别的,也无法纠正和弥补,即存在算法控制盲区。

    为此,本发明实施例提出一种托盘机器人和控制托盘转动的方法,旨在消除底盘1与托盘2的位置偏差,即消除底盘1与托盘2之间的初始位置偏差、以及托盘2转动时增量编码器6估算位置引入的累计偏差,在不需要货架二维码识别货架位置偏差的同时,保证托盘2与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗,提高托盘2转动的准确性和可靠性,同时降低托盘机器人的成本。

    如图2-3所示,本发明实施例的一种托盘机器人,主要包括底盘1、托盘2、增量编码器6、零点限位开关3和控制部(图中并未示出)。其中,托盘2是托盘机器人的转动部件,用于带动其上的功能部件转动。在不便于整体转动的情况下,可以通过托盘2带动功能部件单独转动,例如叉车的托盘2用于带动货叉转动,以叉取货物;agv的托盘2用于顶起货架转动,以将货架摆放为特定角度;图像采集机器人的托盘2用于带动照相机或摄像机转动,以调整镜头角度。增量编码器6是一种测量角位移的数字编码器,它具有分辨能力强、测量精度高和工作可靠等优点,是测量轴转角位置的一种最常用的位移传感器,增量编码器6能够利用计算系统将旋转码盘产生的脉冲增量针对某个基准数进行加减以求得角位移。本发明实施例中,增量编码器6用于检测托盘2的转动角度。零点限位开关3是一种机械装置,设置有机械零点感应标志位,机械零点感应标志位用于指示是否检测到该装置。本发明实施例中,当零点限位开关3与托盘2的零点孔5重合时,输入高电位,机械零点感应标志位的值为1;否则输入低电位,机械零点感应标志位的值为0。

    具体地,增量编码器6设置于托盘2和底盘1之间,且增量编码器6位于托盘2的轴心。底盘1位于托盘2的下方,零点限位开关3设置于底盘1上,托盘2上设置有至少两组零点位4,其中,每组零点位4包括两个零点孔5,当零点限位开关3与任意一个零点孔5重合时,零点限位开关3输入高电位,否则输入低电位。控制部与增量编码器6和零点限位开关3通信连接,控制部用于控制托盘2的转动以及托盘机器人的运行等。控制部的零点标志位记录有在托盘2转动过程中零点限位开关3与零点孔5的重合次数以及托盘2的位置状态。此外,托盘机器人还包括使其正常运行并实现某些功能的其它部件,例如车轮、电机或扫描器等等,本发明实施例中不予赘述。

    在本发明实施例中,零点位4沿托盘2的圆周均匀分布,零点限位开关3在托盘2上的投影位于零点孔5所在圆周。相邻的两个零点位4的中线的夹角可以称为零点相邻角,同一零点位4的两个零点孔5的圆心角可以称为零点内角,作为一种优选的实施方式,零点内角小于30°。此外,托盘2的形状可以是任意形状,例如圆形、方形或三角形等等。

    在本发明实施例中,还可以为托盘2设置归零位置,以该归零位置作为托盘2的理想初始位置,在托盘2完成一次托盘转动指令对应的动作后,再转动到该归零位置,以便于下一次接收到托盘转动指令时精准控制托盘2进行转动。当托盘2处于归零位置时,零点限位开关3位于其中一组零点位4的中线,例如图4中所示情形。

    在托盘2转动的过程中,托盘2相对底盘1上的零点限位开关3转动。当零点限位开关3与任意一个零点孔5重合时,零点限位开关3输入高电位,零点限位开关3的机械零点感应标志位的值为1,此时托盘2已转动到特定位置,通过识别该特定位置可以得到托盘2的位置状态,并得到托盘2从归零位置转动到特定位置已转过多少度,从而精准计算托盘2的剩余转动角度。否则(即零点限位开关3与任意一个零点孔5均不重合时),零点限位开关3输入低电位,零点限位开关3的机械零点感应标志位的值为0。控制部的零点标志位记录有,托盘2在执行一个托盘转动指令的转动过程(即托盘2转动到目标转动角度的过程)中,零点限位开关3与零点孔5的重合次数以及托盘2的位置状态,其中,托盘2的位置状态可以在检测到零点限位开关3与零点孔5重合时进行更新,也可以按预设频率进行更新。由于零点限位开关3和零点孔5的位置是固定的,所以,只要识别零点限位开关3与零点孔5的重合及重合次数,便可以在任意初始状态下修正托盘2的已转动角度和剩余转动角度,消除车体与托盘2之间的初始位置偏差,从而精准确定托盘2转动到的位置,并准确停车(即控制托盘2转动到特定位置后停止),避免停车位置与实际需求不一致。

    如图5所示,本发明实施例的控制托盘转动的方法主要包括以下步骤:

    步骤s501:获取托盘2的目标转动角度。

    agv、叉车和图像采集机器人等托盘机器人在运行时,通常受调度系统、控制中心或总服务器等控制,接受调度系统、控制中心或总服务器等的指令,并执行相应动作,在需要转动托盘2时,托盘机器人会接收到托盘转动指令,从托盘转动指令中可以获取到托盘2的目标转动角度。或,在需要使托盘2转动到特定位置时,预估需要转动的角度(即目标转动角度)。此外,可以通过目标转动角度的值的正负表示左转或右转,目标转动角度可以通过托盘机器人的控制部获取,并控制托盘2进行转动,还可以由第三方服务器代替控制部执行。

    步骤s502:基于增量编码器6确定托盘2的已转动角度。

    增量编码器6能够利用计算系统将旋转码盘产生的脉冲增量针对某个基准数进行加减以求得角位移,即根据增量编码器6的数值可以确定托盘2的已转动角度。作为一种可选的实施方式,可以读取增量编码器6的当前周期的码盘值,并获取上一周期的码盘值(即执行完上一任务后托盘2停留位置对应的码盘值),用当前周期的码盘值减上一周期的码盘值即得到已转动角度。

    步骤s503:根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度。

    由于托盘2安装到底盘1上的初始位置是人为摆正的,该初始位置与归零位置可能存在初始位置偏差,以及,在托盘2转动时增量编码器6估算位置也可能引入的累计偏差,根据零点标志位记载的内容,可以在计算剩余转动角度时纠正和弥补上述偏差,从而保证托盘2与货架的相对位置偏差可控可纠正,提高托盘2转动的准确性和可靠性;同时这一过程中不再需要货架二维码扫描器识别与货架的偏差,降低了托盘机器人的成本。

    在本发明实施例中,步骤s503可以通过以下方式实现:根据目标转动角度和已转动角度计算托盘2的预测剩余角度;读取控制部的零点标志位,基于零点标志位修正预测剩余角度,得到托盘2的剩余转动角度。

    用托盘2的目标转动角度减托盘2的已转动角度即可得到托盘2的预测剩余角度,该预测剩余角度是基于已转动角度所估算的托盘2还需要转多少度可以转到特定位置,但已转动角度是根据从增量编码器6中读取的数值所得到的托盘2实际转过多少度,而不是以归零位置为基准转过多少度,所以需要根据零点标志位的内容对该预测剩余角度进行修正,以准确得到托盘2的剩余转动角度。

    在本发明实施例中,读取控制部的零点标志位,基于零点标志位修正预测剩余角度,得到托盘2的剩余转动角度,这一步骤可以通过以下方式实现:读取控制部的零点标志位,得到重合次数和托盘2的位置状态;根据重合次数和已转动角度修正预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度;或根据重合次数和托盘2的位置状态修正托盘2的预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度。

    在托盘2转动的过程中,当零点限位开关3与任意一个零点孔5重合时,零点限位开关3输入高电位,零点限位开关3的机械零点感应标志位的值为1,此时托盘2已转动到特定位置,通过识别该特定位置可以得到托盘2从归零位置转动到特定位置已转过多少度,从而修正托盘2的预测剩余角度得到托盘2的剩余转动角度,同时,根据该特定位置还可以更新托盘2的位置状态;当零点限位开关3与任意一个零点孔5均不重合时,零点限位开关3输入低电位,零点限位开关3的机械零点感应标志位的值为0。在控制托盘2转动到目标转动角度的全部过程(即托盘2在执行一个托盘转动指令的转动过程)中,零点限位开关3与零点孔5的重合次数以及托盘2的位置状态均记录在控制部的零点标志位,在计算托盘2的剩余转动角度时,可以根据重合次数和已转动角度进行计算,也可以根据重合次数、已转动角度和托盘2的位置状态进行计算。

    需要说明的是,在控制托盘2转动到目标转动角度的全部过程中,可能存在多次计算更新剩余转动角度,即在每次检测到零点限位开关3与零点孔5重合时,计算托盘2的剩余转动角度,并对托盘2的位置状态进行更新,每次计算前重新读取已转动角度,且每次计算后目标转动角度的数值也会进行更新,更新后的目标转动角度表示理论上托盘2转动到特定位置还需要转动的角度。

    在本发明实施例中,根据重合次数和已转动角度修正预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度,这一步骤可以具体通过以下方式实现:若重合次数为0,则θ2=θ1-θok,将目标转动角度的值更新为剩余转动角度的值;若重合次数为1,则获取已转动角度,当已转动角度大于零点相邻角的一半时,θ2=θ1-(a-b/2),将托盘2的位置状态更新为第一状态,将目标转动角度的值更新为剩余转动角度的值;当已转动角度小于或等于零点相邻角的一半时,θ2=θ1-(b/2),将托盘2的位置状态更新为第二状态,将目标转动角度的值更新为剩余转动角度的值。

    在本发明实施例中,根据重合次数和托盘2的位置状态修正托盘2的预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度,这一步骤可以具体通过以下方式实现:若重合次数大于或等于2,则获取最新两次重合对应的零点孔5的圆心角,当最新两次重合对应的零点孔5的圆心角大于零点内角时,θ2=θ1-(a-b),将托盘2的位置状态更新为第五状态,将目标转动角度的值更新为剩余转动角度的值;当最新两次重合对应的零点孔5的圆心角等于零点内角时,查询托盘2的位置状态,如果托盘2的位置状态为第二状态,θ2=θ1,将托盘2的位置状态更新为第四状态,将目标转动角度的值更新为剩余转动角度的值,如果托盘2的位置状态为第一状态、第二状态、第三状态或第五状态,θ2=θ1-b,将托盘2的位置状态更新为第三状态,将目标转动角度的值更新为剩余转动角度的值。

    其中,θ2是剩余转动角度;θ1是目标转动角度;θok是已转动角度;a是零点相邻角,零点相邻角是相邻的两个零点位4的中线的夹角;b是零点内角,零点内角是同一零点位4的两个零点孔5的圆心角。

    当零点限位开关3与零点孔5的重合次数为0时,无法进行修正,可以直接用目标转动角度减已转动角度来计算剩余转动角度。

    当零点限位开关3与零点孔5的重合次数为1时,托盘2相对归零位置转过的角度大于零点内角的一半、但小于零点相邻角减零点内角,若已转动角度大于零点相邻角的一半,则表示托盘2转动的起始位置不是归零位置,托盘2转动的过程是其上的一个零点位4从远离到靠近零点限位开关3,否则表示托盘2转动的起始位置是归零位置,托盘2转动的过程是其上的一个零点位4一直靠近零点限位开关3(托盘2的一个零点位4之内的区域从零点限位开关3上转过),因此,可以结合已转动角度进行修正。

    当零点限位开关3与零点孔5的重合次数大于或等于2时,托盘2相对归零位置转过的角度大于或等于零点内角、但小于零点相邻角加零点内角的一半,若最新两次重合对应的零点孔5的圆心角等于零点内角,则表示托盘2转动的过程是其上的一个零点位4完整地从零点限位开关3上转过,若最新两次重合对应的零点孔5的圆心角大于零点内角,则表示托盘2转动的过程可能是分别属于相邻的两个零点位4的零点孔5依次从零点限位开关3上转过、或托盘2转动的起始位置不是归零位置导致托盘2转动的角度大于理论值,因此,可以结合托盘2的位置状态进行修正。

    基于上述算法,可以在任意初始状态下修正托盘2的已转动角度和剩余转动角度,消除车体与托盘2之间的初始位置偏差,从而精准确定托盘2转动到的位置,并准确停车(即控制托盘2转动到特定位置后停止),避免停车位置与实际需求不一致。

    在本发明实施例中,控制托盘转动的方法还可以包括:控制托盘2转动到归零位置。

    该归零位置作为托盘2的理想初始位置,在托盘2完成一次托盘转动指令对应的动作后,再转动到该归零位置,以便于下一次接收到托盘转动指令时精准控制托盘2进行转动。此外,可以为归零位置对应的零点位4设置与其它零点位4不同的零点内角,例如归零位置对应的零点位4的零点内角为8°、其它零点位4的零点内角为10°,通过零点内角来控制托盘2转到归零位置;也可以控制托盘2反向转回到归零位置等等。

    根据本发明实施例的控制托盘转动的方法可以看出,因为采用获取托盘2的目标转动角度;基于增量编码器6确定托盘2的已转动角度;根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度的技术手段,所以克服了货架二维码扫描器无法识别托盘与货架之间的相对位置偏差,且现有托盘控制算法无法纠正和弥补,存在算法控制盲区;货架二维码扫描器的准确度和可靠性较低;以及对货架二维码扫描器的功能要求较高,且数据采集、发送、解析和处理等消耗的软硬件资源较多的技术问题,进而达到在不需要货架二维码识别货架位置偏差的同时,保证托盘2与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘2转动的准确性和可靠性,同时降低托盘机器人成本的技术效果。

    为了进一步阐述本发明的技术思想,现结合具体的应用场景,对本发明的技术方案进行说明。

    假设某agv的托盘2设置有四组零点位4,零点内角为10°,零点相邻角为90°,在控制托盘2转动的过程中,每次检测到机械零点(即零点限位开关3与零点孔5重合)时,itsinzeroflag=1,其它情况itsinzeroflag=0,检测到机械零点的次数itsinzeronum(即重合次数)记录在控制部的零点标志位,该零点标志位还记录有托盘2的位置状态(palletstatus)。则控制托盘转动的方法应用于该agv的主要流程如下:

    首先,托盘机器人接收到托盘转动指令,该托盘转动指令中携带有需要托盘2左转或右转的角度(即θ1);

    然后,读取增量编码器6的当前周期的码盘值,并获取上一周期的码盘值,用当前周期的码盘值减上一周期的码盘值即得到θok;

    最后,在控制托盘转动的过程中,根据θ1、θok、机械零点感应标志位(itsinzeroflag)、最新两次重合对应的零点孔5的圆心角(θzero)、零点限位开关3与零点孔5的重合次数和托盘2的位置状态,可以实时计算托盘2的θ2,直至θ2=0°(此时托盘2转动到托盘转动指令对应的特定位置),控制托盘2停止转动。具体如下:

    1.未检测到机械零点时:

    重合次数为0,则θ2=θ1-θok,此时更新目标转动角度,即θ1=θ1-θok;

    2.第一次检测到机械零点时:

    重合次数为1,此时itsinzeroflag=1、itsinzeronum=1;

    如果θok(α1)>45°:

    则θ2=θ1–85°,此时更新目标转动角度,即θ1=θ1–85°,并将托盘2的位置状态更新为第一状态,即palletstatus=1(如图6所示位置);

    如果θok(α1)≤45°:

    则θ2=θ1–5°,此时更新目标转动角度,即θ1=θ1–5°,并将托盘2的位置状态更新为第二状态,即palletstatus=2(如图7、8和9所示位置,其中图9所示的托盘2的定位还需要进一步确认);

    3.第二次及以上检测到机械零点时:

    重合次数大于或等于2,此时itsinzeroflag=1、itsinzeronum≥2;

    如果托盘转过的角度θzero(α2)>10°:

    则θ2=θ1–80°,此时更新目标转动角度,即θ1=θ1–80°,并将托盘2的位置状态更新为第五状态,即palletstatus=5(如图7和8所示位置);

    如果托盘转过的角度θzero(α2)=10°:

    若palletstatus=2,θ2=θ1,此时θ1不更新,将托盘2的位置状态更新为第四状态,即palletstatus=4(如图9所示位置,较正算法中托盘2的位置);

    若palletstatus≠2,θ2=θ1–10°,此时更新目标转动角度,即θ1=θ1–10°,并将托盘2的位置状态更新为第三状态,即palletstatus=3(如图6所示位置)。

    如图10所示,本发明实施例的控制托盘转动的装置1000包括:获取模块1001、确定模块1002和计算模块1003。

    其中,

    获取模块1001,用于获取托盘2的目标转动角度;

    确定模块1002,用于基于增量编码器6确定托盘2的已转动角度;

    计算模块1003,用于根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度。

    在本发明实施例中,计算模块1003还可以用于:

    根据目标转动角度和已转动角度计算托盘2的预测剩余角度;

    读取控制部的零点标志位,基于零点标志位修正预测剩余角度,得到托盘2的剩余转动角度。

    在本发明实施例中,计算模块1003可以进一步用于:

    读取控制部的零点标志位,得到重合次数和托盘2的位置状态;

    根据重合次数和已转动角度修正预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度;或

    根据重合次数和托盘2的位置状态修正托盘2的预测剩余角度,得到托盘2的剩余转动角度,并更新托盘2的位置状态以及目标转动角度。

    在本发明实施例中,计算模块1003可以进一步用于:

    若重合次数为0,则θ2=θ1-θok,将目标转动角度的值更新为剩余转动角度的值;

    若重合次数为1,则获取已转动角度,

    当已转动角度大于零点相邻角的一半时,θ2=θ1-(a-b/2),将托盘2的位置状态更新为第一状态,将目标转动角度的值更新为剩余转动角度的值;

    当已转动角度小于或等于零点相邻角的一半时,θ2=θ1-(b/2),将托盘2的位置状态更新为第二状态,将目标转动角度的值更新为剩余转动角度的值;

    其中,θ2是剩余转动角度;θ1是目标转动角度;θok是已转动角度;a是零点相邻角,零点相邻角是相邻的两个零点位4的中线的夹角;b是零点内角,零点内角是同一零点位4的两个零点孔5的圆心角。

    在本发明实施例中,计算模块1003可以进一步用于:

    若重合次数大于或等于2,则获取最新两次重合对应的零点孔5的圆心角,

    当最新两次重合对应的零点孔5的圆心角大于零点内角时,θ2=θ1-(a-b),将托盘2的位置状态更新为第五状态,将目标转动角度的值更新为剩余转动角度的值;

    当最新两次重合对应的零点孔5的圆心角等于零点内角时,查询托盘2的位置状态,

    如果托盘2的位置状态为第二状态,θ2=θ1,将托盘2的位置状态更新为第四状态,将目标转动角度的值更新为剩余转动角度的值,

    如果托盘2的位置状态为第一状态、第二状态、第三状态或第五状态,θ2=θ1-b,将托盘2的位置状态更新为第三状态,将目标转动角度的值更新为剩余转动角度的值。

    此外,控制托盘转动的装置1000还可以包括控制模块(图中并未示出),用于:控制托盘2转动到归零位置;其中,所述归零位置为所述托盘2处于所述零点限位开关3位于其中一组所述零点位4的中线的位置。

    根据本发明实施例的控制托盘转动的装置可以看出,因为采用获取托盘2的目标转动角度;基于增量编码器6确定托盘2的已转动角度;根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度的技术手段,所以克服了货架二维码扫描器无法识别托盘与货架之间的相对位置偏差,且现有托盘控制算法无法纠正和弥补,存在算法控制盲区;货架二维码扫描器的准确度和可靠性较低;以及对货架二维码扫描器的功能要求较高,且数据采集、发送、解析和处理等消耗的软硬件资源较多的技术问题,进而达到在不需要货架二维码识别货架位置偏差的同时,保证托盘2与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘2转动的准确性和可靠性,同时降低托盘机器人成本的技术效果。

    图11示出了可以应用本发明实施例的控制托盘转动的方法或控制托盘转动的装置的示例性系统架构1100。

    如图11所示,系统架构1100可以包括终端设备1101、1102、1103,网络1104和服务器1105。网络1104用以在终端设备1101、1102、1103和服务器1105之间提供通信链路的介质。网络1104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。

    用户可以使用终端设备1101、1102、1103通过网络1104与服务器1105交互,以接收或发送消息等。终端设备1101、1102、1103上可以安装有各种通讯客户端应用,例如购物类应用、网页浏览器应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。

    终端设备1101、1102、1103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。

    服务器1105可以是提供各种服务的服务器,例如对用户利用终端设备1101、1102、1103所浏览的购物类网站提供支持的后台管理服务器。后台管理服务器可以对接收到的产品信息查询请求等数据进行分析等处理,并将处理结果(例如目标推送信息、产品信息)反馈给终端设备。

    需要说明的是,本发明实施例所提供的控制托盘转动的方法一般由服务器1105执行,相应地,控制托盘转动的装置一般设置于服务器1105中。

    应该理解,图11中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。

    下面参考图12,其示出了适于用来实现本发明实施例的终端设备的计算机系统1200的结构示意图。图12示出的终端设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。

    如图12所示,计算机系统1200包括中央处理单元(cpu)1201,其可以根据存储在只读存储器(rom)1202中的程序或者从存储部分1208加载到随机访问存储器(ram)1203中的程序而执行各种适当的动作和处理。在ram1203中,还存储有系统1200操作所需的各种程序和数据。cpu1201、rom1202以及ram1203通过总线1204彼此相连。输入/输出(i/o)接口1205也连接至总线1204。

    以下部件连接至i/o接口1205:包括键盘、鼠标等的输入部分1206;包括诸如阴极射线管(crt)、液晶显示器(lcd)等以及扬声器等的输出部分1207;包括硬盘等的存储部分1208;以及包括诸如lan卡、调制解调器等的网络接口卡的通信部分1209。通信部分1209经由诸如因特网的网络执行通信处理。驱动器1210也根据需要连接至i/o接口1205。可拆卸介质1211,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1210上,以便于从其上读出的计算机程序根据需要被安装入存储部分1208。

    特别地,根据本发明公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1209从网络上被下载和安装,和/或从可拆卸介质1211被安装。在该计算机程序被中央处理单元(cpu)1201执行时,执行本发明的系统中限定的上述功能。

    需要说明的是,本发明所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑磁盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、rf等等,或者上述的任意合适的组合。

    附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

    描述于本发明实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的模块也可以设置在处理器中,例如,可以描述为:一种处理器包括获取模块、确定模块和计算模块。其中,这些模块的名称在某种情况下并不构成对该模块本身的限定,例如,获取模块还可以被描述为“获取托盘2的目标转动角度的模块”。

    作为另一方面,本发明还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该设备包括:步骤s501:获取托盘2的目标转动角度;步骤s502:基于增量编码器6确定托盘2的已转动角度;步骤s503:根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度。

    根据本发明实施例的技术方案,因为采用获取托盘2的目标转动角度;基于增量编码器6确定托盘2的已转动角度;根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘2的剩余转动角度的技术手段,所以克服了货架二维码扫描器无法识别托盘与货架之间的相对位置偏差,且现有托盘控制算法无法纠正和弥补,存在算法控制盲区;货架二维码扫描器的准确度和可靠性较低;以及对货架二维码扫描器的功能要求较高,且数据采集、发送、解析和处理等消耗的软硬件资源较多的技术问题,进而达到在不需要货架二维码识别货架位置偏差的同时,保证托盘2与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘2转动的准确性和可靠性,同时降低托盘机器人成本的技术效果。

    上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。


    技术特征:

    1.一种控制托盘转动的方法,应用于托盘机器人,所述托盘机器人包括底盘(1)、托盘(2)、设置于所述底盘(1)上的零点限位开关(3)、增量编码器(6)和控制部,托盘(2)上设置有至少两组由两个零点孔(5)组成的零点位(4),所述控制部的零点标志位记录有在所述托盘(2)转动过程中所述零点限位开关(3)与所述零点孔(5)的重合次数以及所述托盘(2)的位置状态,其特征在于,所述方法包括:

    获取所述托盘(2)的目标转动角度;

    基于所述增量编码器(6)确定所述托盘(2)的已转动角度;

    根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘(2)的剩余转动角度。

    2.根据权利要求1所述的方法,其特征在于,根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘(2)的剩余转动角度,包括:

    根据所述目标转动角度和所述已转动角度计算所述托盘(2)的预测剩余角度;

    读取所述控制部的零点标志位,基于所述零点标志位修正所述预测剩余角度,得到所述托盘(2)的剩余转动角度。

    3.根据权利要求2所述的方法,其特征在于,读取所述控制部的零点标志位,基于所述零点标志位修正所述预测剩余角度,得到所述托盘(2)的剩余转动角度,包括:

    读取所述控制部的零点标志位,得到所述重合次数和所述托盘(2)的位置状态;

    根据所述重合次数和所述已转动角度修正所述预测剩余角度,得到所述托盘(2)的剩余转动角度,并更新所述托盘(2)的位置状态以及所述目标转动角度;或

    根据所述重合次数和所述托盘(2)的位置状态修正所述托盘(2)的预测剩余角度,得到所述托盘(2)的剩余转动角度,并更新所述托盘(2)的位置状态以及所述目标转动角度。

    4.根据权利要求3所述的方法,其特征在于,根据所述重合次数和所述已转动角度修正所述预测剩余角度,得到所述托盘(2)的剩余转动角度,并更新所述托盘(2)的位置状态以及所述目标转动角度,包括:

    若重合次数为0,则θ2=θ1-θok,将所述目标转动角度的值更新为所述剩余转动角度的值;

    若重合次数为1,则获取所述已转动角度,

    当所述已转动角度大于零点相邻角的一半时,θ2=θ1-(a-b/2),将所述托盘(2)的位置状态更新为第一状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述已转动角度小于或等于零点相邻角的一半时,θ2=θ1-(b/2),将所述托盘(2)的位置状态更新为第二状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    其中,θ2是所述剩余转动角度;θ1是所述目标转动角度;θok是所述已转动角度;a是所述零点相邻角,所述零点相邻角是相邻的两个所述零点位(4)的中线的夹角;b是所述零点内角,所述零点内角是同一所述零点位(4)的两个零点孔(5)的圆心角。

    5.根据权利要求4所述的方法,其特征在于,根据所述重合次数、所述已转动角度和所述托盘(2)的位置状态修正所述托盘(2)的预测剩余角度,得到所述托盘(2)的剩余转动角度,并更新所述托盘(2)的位置状态以及所述目标转动角度,包括:

    若重合次数大于或等于2,则获取最新两次重合对应的所述零点孔(5)的圆心角,

    当所述最新两次重合对应的所述零点孔(5)的圆心角大于零点内角时,θ2=θ1-(a-b),将所述托盘(2)的位置状态更新为第五状态,将所述目标转动角度的值更新为所述剩余转动角度的值;

    当所述最新两次重合对应的所述零点孔(5)的圆心角等于零点内角时,查询所述托盘(2)的位置状态,

    如果所述托盘(2)的位置状态为第二状态,θ2=θ1,将所述托盘(2)的位置状态更新为第四状态,将所述目标转动角度的值更新为所述剩余转动角度的值,

    如果所述托盘(2)的位置状态为第一状态、第二状态、第三状态或第五状态,θ2=θ1-b,将所述托盘(2)的位置状态更新为第三状态,将所述目标转动角度的值更新为所述剩余转动角度的值。

    6.根据权利要求1所述的方法,其特征在于,所述方法还包括:

    控制所述托盘(2)转动到归零位置;其中,所述归零位置为所述托盘(2)处于所述零点限位开关(3)位于其中一组所述零点位(4)的中线的位置。

    7.一种控制托盘转动的装置,其特征在于,包括:

    获取模块,用于获取所述托盘(2)的目标转动角度;

    确定模块,用于基于所述增量编码器(6)确定所述托盘(2)的已转动角度;

    计算模块,用于根据所述目标转动角度、所述已转动角度以及所述控制部的零点标志位,计算所述托盘(2)的剩余转动角度。

    8.一种控制托盘转动的电子设备,其特征在于,包括:

    一个或多个处理器;

    存储装置,用于存储一个或多个程序,

    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6中任一所述的方法。

    9.一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-6中任一所述的方法。

    技术总结
    本发明公开了一种控制托盘转动的方法和装置,涉及计算机技术领域。该方法的一具体实施方式包括:获取托盘的目标转动角度;基于增量编码器确定托盘的已转动角度;根据目标转动角度、已转动角度以及控制部的零点标志位,计算托盘的剩余转动角度。该实施方式能够在不需要货架二维码识别货架位置偏差的同时,保证托盘与货架的相对位置偏差可控可纠正,减少软硬件资源的消耗;提高托盘转动的准确性和可靠性,同时降低托盘机器人成本。

    技术研发人员:张丽
    受保护的技术使用者:北京京东乾石科技有限公司
    技术研发日:2019.09.12
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-24665.html

    最新回复(0)