高碱性氧化铝赤泥固碳的方法与流程

    专利2022-07-08  86


    本发明涉及工业废气和固体废弃物资源化应用领域,具体涉及一种高碱性氧化铝赤泥固碳的方法。



    背景技术:

    2019年全球排放量仍保持在330亿吨,与能源相关的全球二氧化碳排放量停止增长,中国的排放量有所上升但比较缓和。英国石油公司发布的《bp世界能源统计年鉴2019》强调,针对气候变化采取行动的呼声日益高涨,但减少碳排放的实际进展却相对缓慢。

    随着二氧化碳的过量排放温室效应日益严重,近150年全球平均温度升高了1℃,引起冰川融化海平面上升、极端天气增多、影响自然生态系统、破坏生物多样性、物种灭绝等现象。因此,如何降低二氧化碳排放及其回收利用成为人类社会可持续发展的一大难题,特别是对可直接固定工业废气中co2的捕捉和封存技术的研究和应用亟待全面展开。

    赤泥是氧化铝工业的污染性废渣,由于高碱性和低放射性特征致使其利用率极低。截至2018年全球堆存量已经达到40亿吨,我国是氧化铝生产大国,占全球年产量的55%。全国共有赤泥尾矿库50余座,其中,河南省有赤泥尾矿库29座。赤泥的露天堆存严重破坏堆场周边的生态环境,占地和管理问题也给氧化铝冶炼企业带来巨大的经济压力。

    赤泥是一种不溶性的残渣,主要化学成分有al2o3、fe2o3、sio2、cao、na2o、tio2等,因铝土矿产地和氧化铝生产方法的不同而有所差异。氧化铝的冶炼过程引入大量的苛性钠致使赤泥ph介于12~14之间,长期堆放会打破土壤的酸碱度平衡,破坏生态环境,如果其滤液下渗,还会引发地下水硬度变化,对人类和其他动物健康危害极大。



    技术实现要素:

    本发明提出了一种高碱性氧化铝赤泥固碳的方法,通过赤泥中赋存的高碱性与磷酸氢氨反应得到的氨气固定吸收二氧化碳,并获取可用于农业生产的碳酸氢铵和新型建筑材料的含磷赤泥残渣,在达到“以废治废”目的同时,实现真正的工业固体废弃物资源化和“绿色生产”。

    实现本发明的技术方案是:

    一种高碱性氧化铝赤泥固碳的方法,步骤如下:

    (1)将赤泥晒干,利用sm-500水泥试验球磨机研磨8~15min,磨细赤泥的细度为80μm方孔筛余不大于5%,过150μm方孔筛备用;

    所述赤泥为氧化铝企业用铝土矿提炼氧化铝之后工业残渣,其主要矿物组成有石英、针铁矿、长石、水铝石、方解石、金红石、硅酸钙和铝硅酸钙等,其化学组成有al2o3、sio2、fe2o3、tio2、cao、mgo、na2o和k2o以及一些稀有金属氧化物,化学反应活性较低,具有高碱性(ph值介于11~13)和放射性(内、外照指数均大于1.5)具有强碱性和低放射性,长期堆存严重污染环境;

    (2)将步骤(1)磨细赤泥、氧化钙和水搅拌均匀,装入密封搅拌机中强力搅拌20min,静置1.5~2h,反复2~3次,之后加入磷酸二氢铵,强力搅拌30~40min,随后静置1.5~2h,循环3~5次;

    所述生石灰为钙质石灰85级,有效成分不小于85%,主要作用是使赤泥释放出更多碱金属离子,同时升高搅拌机内温度,提高赤泥的化学反应活性;所述密封搅拌机为cmp50立轴式行星搅拌机搅拌机,包括搅拌罐、顶部设有驱动电机、进料漏斗、观察口和单向排气阀以及底部支撑架和出料管;

    所述磷酸二氢铵为工业级磷酸二氢铵,有效成分nh4h2po4含量在98%-99%;

    (3)在步骤(2)强力搅拌和静置期间通过单向排气管道收集氨气,之后收集含磷赤泥残渣;获得的含磷赤泥可用作制备磷酸镁水泥,可作为制备绿色水硬性胶凝材料的主要原材料;

    (4)将步骤(3)中收集的氨气引入盛有蒸馏水的反应釜容器中,制得饱和氨水,向饱和氨水中通入过量二氧化碳反应制备碳酸氢铵。

    所述步骤(1)中研磨15~25min出磨,之后负压压力4~6kpa,利用80μm方孔筛余不大于5%,过150μm方孔筛备用筛析时间为120s。

    所述步骤(2)中磨细赤泥、氧化钙、水和磷酸二氢铵的质量比为50:(5-10):(15-25):(18-25)。

    所述步骤(4)中碳酸氢铵在常温下过量结晶析出,未饱和溶液中的碳酸氢铵通过冰浴冷却降温的方法析出。

    所述步骤(4)中反应釜容器为gshb-5l透明玻璃反应釜,釜顶有两个进气口分别连接密封搅拌机单向排气管道和二氧化碳罐,反应釜包含釜内温度、二氧化碳浓度、氨水浓度监测装置。

    所述步骤(4)中二氧化碳使用罐装二氧化碳,打开其阀门后二氧化碳通过管道进入密闭容器。

    本发明加入生石灰能够通过熟化作用提高体系的碱度和温度,一方面,石灰能够促进磨细氧化铝赤泥中可溶性钠离子和钾离子的溶出,进而增加赤泥与磷酸氢铵反应生成氨气的量,提高二氧化碳的固定效率;另一方面,通过3次搅拌和静置循环工艺,氧化铝赤泥与石灰的反应更加均匀充分,为其下一步与磷酸氢铵的反应提供保证;再者,碱激发作用能够进一步提高磨细氧化铝赤泥的反应活性,提高在新型建筑材料领域应用的可能性。

    本发明中加入磷酸二氢氨的作用主要体现在以下三个方面:首先,磷酸二氢氨与赤泥中的碱和熟石灰发生酸碱中和反应,生成氨气可用于固定二氧碳;其次,过量添加磷酸二氢氨可使赤泥残渣的保持弱酸性,并含有大量的h2po4-、hpo42-和po43-离子,为赤泥在建筑材料和土壤改良领域的资源化利用奠定基础;再次,湿润赤泥通过搅拌和搅拌循环工艺,可使体系中的酸碱反应在水分不足的条件下充分反应,减少二次赤泥残渣在资源化利用中的环境问题和处理费用。

    本发明的有益效果是:

    (1)一方面实现了烟气二氧化碳的固定,并制备出氮肥可用于农业生产;另一方面经过固碳过程,赤泥的碱性降低、反应活性提高,并富含大量磷酸根离子,为其在建筑材料和土壤改良领域的应用奠定基础。

    (2)该方法利用氧化铝工业的有害固体废弃固定吸收工业废气中的二氧化碳,达到“以废治废”的环境效应;该方法在固定二氧化碳的同时,赤泥的碱度降低,反应活性均显著提高,并含有大量磷酸根离子,为赤泥在建筑材料和土壤改良领域的资源化利用奠定基础。

    (3)该方法通过氧化铝赤泥固定二氧化碳,并制备出高纯度碳酸氢铵,可用于各种土壤及各种农作物,也可以用作食品膨胀剂、环氧树脂、酚醛树脂等,在“以废治废”的同时实现了废弃物的有价利用。

    (4)该方法固定二氧化碳的成本低、工艺简单,原材料和设备精度要求不高,根据上述所给步骤操作均可达到良好的固碳效果,同时获取碳酸氢铵和含磷赤泥残渣,为氧化铝工业的固体废物资源化利用和工业烟气治理提供了一条经济可行的途径。

    附图说明

    为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

    图1为本发明氧化铝赤泥固碳工艺流程图。

    图2是本发明氧化铝赤泥固碳装置示意图。

    其中,1-二氧化碳浓度检测仪,2-出料口阀门,3-入料口,4-出气口,5-搅拌电机,6-搅拌机入料口,7-搅拌桨。

    具体实施方式

    下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

    实施例1

    氧化铝赤泥固碳的原材料配合比:磨细赤泥25.0kg、生石灰2.5kg、10.0kg磷酸二氢铵和12.5kg水。

    (1)原材料准备:将原状氧化铝赤泥晾干,磨细过150μm方孔筛备用;工业级磷酸二氢铵;钙质生石灰粉;普通饮用水;测试原状赤泥、磨细赤泥和活化赤泥的化学组成和可溶性钾、钠离子含量,并折算出可溶性na2o和k2o总量,测试和计算结果见表1所示。

    表1原状赤泥、磨细赤泥和活化赤泥的化学组成质量百分比和可溶性钾、钠氧化物总量。

    (2)氨气收集:按照图1所示氧化铝赤泥固碳工艺流程,采用图2装置示意图指定的设备,将氨水收集到反应釜内蒸馏水中,回收含磷赤泥。

    (3)二氧化碳固定:反应釜中氨水浓度达到15~18mol/l后,同时通入氨气和过量二氧化碳生成碳酸氢铵,直至石灰活化赤泥与磷酸二氢铵反应结束,停止通入二氧化碳,打开反应釜排气阀并检测出气口二氧化碳浓度,计算反应釜内剩余的二氧化碳的量和二氧化碳固定量。

    (4)碳酸氢铵析出:氨气和二氧化碳的不断通入,碳酸氢铵大量生成,由于室温碳酸氢铵在水中溶解度为17%,碳酸氢铵晶体过饱和析晶。反应结束后,未饱和溶液中的碳酸氢铵通过冰浴降温析出,计算碳酸氢铵的总生成量。

    (5)测试分析:包含赤泥的化学组成、可溶性k 、na 离子含量和可溶性na2o和k2o总量计算、碳酸氢铵析出量和二氧化碳的固定效率计算。

    ①化学组成参照《水泥化学分析方法》(gb/t176-2017),采用化学滴定法测试。

    ②可溶性k 、na 离子含量通过wgh6400型火焰光度计测定,根据测试溶液的稀释浓度计算赤泥中可溶性na2o和k2o总量百分数。

    ③经称量测试,采用本发明的实施案例1的配合比和工艺,25kg活化氧化铝赤泥可以固定1630l(3.23kg)二氧化碳气体,获得6.25kg碳酸氢铵和47.5kg含磷赤泥(含水率25.3%)。

    实施例2

    氧化铝赤泥固碳的原材料配合比:磨细赤泥25.0kg、生石灰5.0kg、12.5kg磷酸二氢铵和7.5kg水。

    除配合比外,其它工艺均与实施案例1相同。经称量测试,采用实施例2的配合比和工艺,25kg活化氧化铝赤泥可以固定2080l(4.15kg)二氧化碳气体,获得8.02kg碳酸氢铵和46.5kg含磷赤泥(含水率20.2%)。

    实施例3

    氧化铝赤泥固碳的原材料配合比:磨细赤泥25.0kg、生石灰4.0kg、9.0kg磷酸二氢铵和12.0kg水。

    除配合比外,其它工艺均与实施案例1相同。

    经称量测试,采用本发明的实施案例3的配合比和工艺,25kg活化氧化铝赤泥可以固定1490l(2.95kg)二氧化碳气体,获得5.90kg碳酸氢铵和48.1kg含磷赤泥(含水率24.6%)。

    以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。


    技术特征:

    1.一种高碱性氧化铝赤泥固碳的方法,其特征在于,步骤如下:

    (1)将赤泥晒干用球磨机磨细过筛;

    (2)将步骤(1)磨细赤泥、氧化钙和水搅拌均匀,加入磷酸二氢铵,强力搅拌并静置,循环3-5次;

    (3)在步骤(2)强力搅拌和静置期间通过单向排气管道收集氨气,之后收集含磷赤泥残渣;

    (4)将步骤(3)中收集的氨气引入盛有蒸馏水的反应釜容器中,制得饱和氨水,向饱和氨水中通入过量二氧化碳反应制备碳酸氢铵。

    2.根据权利要求1所述的高碱性氧化铝赤泥固碳的方法,其特征在于:所述步骤(1)中赤泥为氧化铝残渣,组分包括石英、针铁矿、长石、水铝石、方解石、金红石、硅酸钙和铝硅酸钙,ph值为11~13,放射性内、外照指数均大于1.5。

    3.根据权利要求1所述的高碱性氧化铝赤泥固碳的方法,其特征在于:所述步骤(1)中研磨15~25min出磨,之后负压压力4~6kpa,利用80μm方孔筛余不大于5%,过150μm方孔筛备用筛析时间为120s。

    4.根据权利要求1所述的高碱性氧化铝赤泥固碳的方法,其特征在于:所述步骤(2)中磨细赤泥、氧化钙、水和磷酸二氢铵的质量比为50:(5-10):(15-25):(18-25)。

    5.根据权利要求1所述的高碱性氧化铝赤泥固碳的方法,其特征在于:所述步骤(2)中磨细赤泥、氧化钙和水强力搅拌强力搅拌20min,静置1.5~2h,反复2~3次,之后加入磷酸二氢铵,强力搅拌30~40min,随后静置1.5~2h,循环3~5次。

    6.根据权利要求1所述的高碱性氧化铝赤泥固碳的方法,其特征在于:所述步骤(4)中碳酸氢铵在常温下过量结晶析出,未饱和溶液中的碳酸氢铵通过冰浴冷却降温的方法析出。

    技术总结
    本发明提供了一种高碱性氧化铝赤泥固碳的方法,步骤如下:(1)将赤泥晒干用球磨机磨细过筛;(2)将步骤(1)磨细赤泥、氧化钙和水搅拌均匀,加入磷酸二氢铵,强力搅拌并静置,循环3‑5次;(3)在步骤(2)强力搅拌和静置期间通过单向排气管道收集氨气,之后收集含磷赤泥残渣;(4)将步骤(3)中收集的氨气引入盛有蒸馏水的反应釜容器中,制得饱和氨水,向饱和氨水中通入过量二氧化碳反应制备碳酸氢铵。本发明实现了烟气二氧化碳的固定,并制备出氮肥可用于农业生产;另一方面经过固碳过程,赤泥的碱性降低、反应活性提高,并富含大量磷酸根离子,为其在建筑材料和土壤改良领域的应用奠定基础。

    技术研发人员:刘俊霞;海然;张磊;惠存;李建伟;程学磊;李忠育
    受保护的技术使用者:中原工学院
    技术研发日:2020.12.16
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-22947.html

    最新回复(0)