基于光固化3D打印成型的闭气孔陶瓷浮力材料及制备方法与流程

    专利2022-07-08  81


    本发明涉及一种浮力材料
    技术领域
    ,特别是涉及一种基于光固化3d打印成型的闭气孔陶瓷浮力材料及其制备方法。
    背景技术
    :随着海洋开发技术的发展,人们对海洋蕴含能量的开发越来越多、越来越深入,且潜入海底的深度越来越深。浮力材料是深潜探测器不可或缺的关键材料,浮力材料的发展直接决定了海洋探测的深度,是进一步挖掘海洋能量至关重要的材料之一。现阶段深海探测器普遍采用的是复合泡沫塑料浮力材料;其中,该材料是通过环氧树脂将空玻璃微珠固化得到的。该复合泡沫塑料浮力材料可用于5000米以内的深海探测器。据报道,我国更深海域的深海探测器浮力材料均依靠进口,深海探测器浮力材料极大的限制了国内海洋开发的进展。对于现有的轻质中空微珠填充树脂的方法制备的浮力材料,想要降低其密度,只能增加更多不同尺寸的空心微珠;但是多年的不断优化,该方法已经接近极限,进一步开发强度更好、孔隙率更高的浮力材料陷入了瓶颈。因此,亟需研发一种全新的浮力材料及其制备方法。技术实现要素:有鉴于此,本发明提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料及制备方法,主要目的在于制备一种孔隙率高、强度优异的浮力材料。为达到上述目的,本发明主要提供如下技术方案:一方面,本发明的实施例提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其中,所述制备方法包括如下步骤:制备光固化成型素坯步骤:采用光固化3d打印机对光固化3d打印浆料进行光固化成型,得到光固化成型素坯;脱脂、烧结处理步骤:对所述光固化成型素坯进行脱脂、烧结处理,得到多孔陶瓷材料;涂覆步骤:在所述多孔陶瓷材料的表面涂覆紫外线固化强化剂,得到表面涂覆有紫外线固化强化剂的多孔陶瓷材料;其中,所述紫外线固化强化剂包括光固化3d打印浆料、改性剂及强化剂;紫外线固化处理步骤:对所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料进行紫外线固化处理,以在所述多孔陶瓷材料的表面形成光固化复合涂层,得到闭气孔陶瓷浮力材料。优选的,所述改性剂为聚乙二醇、乙二醇、甘露醇、硬脂酸、脂肪族叔胺、乙醇胺类叔胺、叔胺型苯甲酸酯中的一种或几种。优选的,所述强化剂为sio2、al2o3、zro2、tio2、cao、mgo中的一种或几种。优选的,所述紫外线固化强化剂的粘度为1000-3000mpa·s、固含量为8-20%。优选的,在所述紫外线固化强化剂中:所述3d打印浆料、改性剂、强化剂的质量比为9:(0.1-0.3):(0.7-0.9)。优选的,所述紫外线固化强化剂是由光固化3d打印浆料、改性剂及强化剂组成。优选的,所述光固化3d打印浆料的粘度为40-55mpa·s;优选的,所述光固化3d打印浆料的固含量为40-60%。优选的,以重量份数计,所述光固化3d打印浆料由以下原料配制而成:高分子紫外光聚合物20-40重量份、活性稀释剂10-15重量份、纳米陶瓷粉2-25重量份、粘结剂10-25,表面活性剂1-5重量份,分散剂1-10重量份,紫外光吸收剂1-15重量份。优选的,所述高分子紫外光聚合物为纯丙烯酸酯、环氧丙烯酸酯、双酚a二缩水油醚二环氧丙烯酸树脂、聚氨酯丙烯酸酯、双酚a二缩水油醚二环氧树脂、缩水甘油胺类环氧树脂中的一种或几种。优选的,所述活性稀释剂为三环癸基二甲醇二丙烯酸酯、二缩丙二醇二丙烯酸酯中的一种或两种。优选的,所述纳米陶瓷粉为sio2、al2o3、tio2、wc、tin、zro2中的一种或几种,其中陶瓷粉末粒径为10-20nm。优选的,所述表面活性剂选自氨羟基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂、环氧羟基硅烷偶联剂、钛酸酯偶联剂中的一种或几种。优选的,所述分散剂为聚乙二醇、乙酸乙酯、正辛醇、油酸中的一种或几种。优选的,所述粘结剂为巴斯夫184、巴斯夫819、巴斯夫256、巴斯夫1173中的一种或几种。优选的,所述紫外光吸收剂为uv-234、uv-326、uv-328中的一种或几种。优选的,在所述制备光固化成型素坯步骤中:所述光固化成型的波长是365-450nm、扫描速度为1500-2870mm/s,扫描方式为x-y、扫描间距为0.2-0.4mm。优选的,在所述脱脂、烧结处理步骤中:所述脱脂处理步骤包括:在氮气或惰性气体的气氛下,以1-5℃/min升温速率将所述光固化成型素坯加热至500-800℃,保温3-7h后冷却至室温;优选的,所述脱脂处理步骤是在排胶炉中进行;和/或所述烧结处理步骤包括:先以5-10℃/min的升温速率将所述脱脂处理后的光固化成型素坯加热至600-700℃,保温1h;再以4-7℃/min的升温速率将所述光固化成型素坯加热至1200-1700℃,保温4-10h后,冷却至室温;优选的,所述烧结处理步骤是在氮气、惰性气体、大气中任一种气氛中埋烧的烧结炉中进行。优选的,在所述涂覆步骤中:采用涂布工艺或刷涂工艺将紫外线固化强化剂均匀涂覆于所述多孔陶瓷材料的表面。优选的,在所述紫外线固化处理步骤中:利用紫外汞灯照射所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料;其中,所紫外汞灯与所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料之间的距离为150-200mm。另一方面,本发明实施例提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,其中,所述闭气孔陶瓷浮力材料包括:基于光固化3d打印成型的多孔陶瓷材料和在所述多孔陶瓷材料表面制备的光固化复合涂层;优选的,所述闭气孔陶瓷浮力材料的闭气孔率为100%;优选的,所述闭气孔陶瓷浮力材料的抗压强度超过130mpa;优选的,所述闭气孔陶瓷浮力材料是由上述任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法制备而成。与现有技术相比,本发明的基于光固化3d打印成型的闭气孔陶瓷浮力材料及制备方法至少具有下列有益效果:一方面,本发明提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,是基于光固化3d打印陶瓷技术的陶瓷烧结机制,制备出以多孔陶瓷材料为主体的浮力材料,使得所制备的浮力材料同时具备较高的强度(抗压强度超过130mpa)和高孔隙率(较小的密度),能较好的满足深海探测器浮力材料的高强度要求;在此基础上,通过涂覆、光固化工艺在多孔陶瓷材料的表面制备了致密的光固化复合涂层,使得该浮力材料的闭气孔率为100%(使得浮力材料具有较小的体积吸水率),且兼具高强度、防海水腐蚀的特性;此外,光固化复合涂层对外界的冲击力具有较好的缓冲作用,使得该浮力材料具有一定的韧性。本发明提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,摆脱了传统发泡微球填充产生气孔的方法对提高孔隙率的限值;本发明提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,在光固化3d打印中通过光固化树脂的脱出、固含量的控制,使多孔陶瓷材料中的孔隙率可控、孔隙分布和尺寸可控,为浮力材料中孔隙率的进一步提升提供了较大的空间。本发明提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,可制备各种复杂和不规则形状的陶瓷浮力材料,对生产条件依赖性小、绿色生产、工艺简单、生产效率高、工件表面形状要求低、成本低。另一方面,本发明实施例提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,该闭气孔陶瓷浮力材料包括基于光固化3d打印成型的多孔陶瓷材料和光固化在多孔陶瓷材料表面的光固化复合涂层;该结构的闭气孔陶瓷浮力材料的孔隙率高、密度小、强度优异、耐磨抗腐蚀性、质量稳定、服役寿命长、制备工艺简单、100%闭气孔率。上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。附图说明图1是本发明的实施例提供的一种基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法的流程图;图2是本发明的实施例1提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的示意图;图3是图2所示的基于光固化3d打印成型的闭气孔陶瓷浮力材料的横截面示意图。具体实施方式为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效以,下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特,征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。现有制备浮力材料的方法(轻质中空微珠填充树脂的方法)众所周知是不能具有百分之百的闭气孔率的,气孔率的增加必定导致其浮力材料的强度下降,所以现有工艺制备的浮力材料气孔率都相对较低,且对气孔率的调整幅度相当有限。为了进一步开发强度更好、孔隙率更高的浮力材料,本发明提出了一种全新的浮力材料及其制备方法,具体如下:一方面,如图1所示,本发明实施例提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,包括如下步骤:配制光固化3d打印浆料:以重量份数计,所述光固化3d打印浆料由以下原料配制而成:高分子紫外光聚合物20-40重量份、活性稀释剂10-15重量份、纳米陶瓷粉2-25重量份、粘结剂10-25,表面活性剂1-5重量份,分散剂1-10重量份,紫外光吸收剂1-15重量份。所述高分子紫外光聚合物为纯丙烯酸酯、环氧丙烯酸酯、双酚a二缩水油醚二环氧丙烯酸树脂、聚氨酯丙烯酸酯、双酚a二缩水油醚二环氧树脂、缩水甘油胺类环氧树脂中的一种或几种的混合物。活性稀释剂为三环癸基二甲醇二丙烯酸酯、二缩丙二醇二丙烯酸酯中的一种或两种。纳米陶瓷粉为sio2、al2o3、tio2、wc、tin、zro2中的一种或几种,其中陶瓷粉末粒径为10-20nm。表面活性剂选自氨羟基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂、环氧羟基硅烷偶联剂、钛酸酯偶联剂中的一种或几种。分散剂为聚乙二醇、乙酸乙酯、正辛醇、油酸中的一种或几种。粘结剂为巴斯夫184、巴斯夫819、巴斯夫256、巴斯夫1173中的一种或几种。紫外光吸收剂为uv-234、uv-326、uv-328中的一种或几种。较佳地,光固化3d打印浆料其粘度为40-55mpa·s,固含量为40-60%。在此,上述配方的光固化3d打印浆料(组成、粘度、固化量),配合下述的脱脂、烧结工艺,使得浮力材料的主体,即多孔陶瓷材料具有较高的孔隙率及较高的机械强度,同时还能对孔隙的分布及尺寸进行控制。制备光固化成型素坯步骤:采用光固化3d打印机对光固化3d打印浆料(即,上述的配制光固化3d打印浆料步骤中所配制的光固化3d打印浆料)进行光固化成型,得到光固化成型素坯。其中,光固化成型的波长范围为365-450nm、扫描速度为1500-2870mm/s、扫描方式为x-y、扫描间距为0.2-0.4mm。在此的波长范围对应的是配方中的紫外光吸收剂和粘结剂的作用范围;扫描速度影响的是固化速度和固化深度;扫描间距控制的是固化宽度的重合范围,影响的是表面层的固化效果。脱脂、烧结处理步骤:对光固化成型素坯进行脱脂、烧结处理,得到多孔陶瓷材料。其中,脱脂处理步骤是在氮气或氩气气氛的排胶炉中进行,以1-5℃/min的速率升温至500-800℃,然后保温3-7h后随炉冷却至室温。烧结处理步骤是在氮气、氩气或大气中的埋烧的烧结炉中进行,以5-10℃/min的速率升温至600-700℃,保温1h;然后以4-7℃/min升温至1200-1700℃,保温4-10h,然后随炉冷至室温。上述脱脂、烧结条件可以确保所制备多孔陶瓷材料是无裂纹或裂纹少的多孔陶瓷材料。配制紫外线固化强化剂:紫外线固化强化剂是由光固化3d打印浆料(即,上述的配制光固化3d打印浆料步骤中所配制的光固化3d打印浆料)、改性剂及强化剂组成;其中,光固化3d打印浆料、改性剂及强化剂的质量比为9:(0.1-0.3):(0.7-0.9)。改性剂为聚乙二醇、乙二醇、甘露醇、硬脂酸、脂肪族叔胺、乙醇胺类叔胺、叔胺型苯甲酸酯中的一种或几种。改性剂的作用是活化陶瓷粉末表面特性,使粉末更容易分散于树脂中,促进陶瓷粉末与树脂黏接。强化剂为sio2、al2o3、zro2、tio2、cao、mgo中的一种或几种。表面紫外线固化强化剂的粘度为1000-3000mpa·s、固含量为8-20%。在此,上述设计的紫外线固化强化剂配方(光固化3d打印浆料的配方;光固化3d打印浆料和改性剂、强化剂的用量比例),确保了闭气孔陶瓷材料表面的复合涂层的的强度、防腐蚀性、韧性。在此,上述的紫外线固化强化剂的粘度及固含量要求,确保所制备浮力材料的闭气孔率为100%。涂覆步骤:将紫外线固化强化剂涂覆在所述多孔陶瓷材料的表面,得到表面涂覆有紫外线固化强化剂的多孔陶瓷材料。该步骤具体为:利用涂布工艺或刷涂工艺将紫外线固化强化剂均匀涂覆于多孔陶瓷材料表面。紫外线固化处理步骤:对所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料进行紫外线固化处理,以在所述多孔陶瓷材料的表面形成光固化复合涂层,得到闭气孔陶瓷浮力材料。该步骤具体为:利用紫外汞灯距离工件150-200mm照射,获得闭气孔陶瓷浮力材料。另一方面,本发明实施例还提供一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,如图2和图3所示,本发明实施例的基于光固化3d打印成型的闭气孔陶瓷浮力材料包括基于光固化3d打印成型的多孔陶瓷材料1和光固化在多孔陶瓷材料1表面的光固化复合涂层2(该光固化复合涂层为有机-陶瓷复合涂层)。从图2可以看出,该光固化成型的闭气孔陶瓷浮力材料的表面无气孔,因此其闭气孔率为100%。较佳地,光固化复合涂层2的厚度为50-500μm;且从图2中还可以明显看出,该光固化成型的闭气孔陶瓷浮力材料的孔隙率高。在此,本发明实施例提供的基于光固化3d打印成型的闭气孔陶瓷浮力材料的孔隙率与光固化3d打印浆料的组成、脱脂烧结处理工艺条件等有关;而且可以通过调整光固化3d打印浆料的固含量对其中的孔隙率、孔隙分布和尺寸进行调整。本发明实施例的闭气孔陶瓷浮力材料,由于陶瓷的强度和力学性能较为突出,使得本发明实施例制备的闭气孔陶瓷浮力材料具有更高的强度。下面通过具体实验实施例进一步对本发明说明如下:实施例1本实施例制备一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,具体步骤如下:1)配制粘度为50mpa·s、固含量为60%的光固化3d打印浆料。其中,以重量份计,光固化3d打印浆料的组成如下:高分子紫外光聚合物40重量份、活性稀释剂10重量份、纳米陶瓷粉25重量份、粘结剂10重量份、表面活性剂1重量份、分散剂10重量份、紫外光吸收剂4重量份(其中每重量份为10g)。其中,高分子紫外光聚合物为纯丙烯酸酯和环氧丙烯酸酯以7:1的比例混合得到树脂、活性稀释剂为三环癸基二甲醇二丙烯酸酯、纳米陶瓷粉为sio2和al2o3以3:4的比例混合得到的混合粉、表面活性剂为氨羟基硅烷偶联剂、分散剂为聚乙二醇、粘结剂为巴斯夫184,紫外光吸收剂为uv-328。2)使用波长为365nm的光固化陶瓷3d打印机把910g光固化3d打印浆料进行光固化成型制备,得到光固化成型素坯;其中,扫描速度为2870mm/s,扫描方式为x-y,扫描间距为0.4mm。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。3)对光固化成型素坯依次进行脱脂、烧结处理。其中,脱脂处理工艺是在氮气气氛的排胶炉中进行,具体地,以1℃/min的升温速率将光固化成型素坯升温至500℃,保温7h后,随炉冷却至室温。烧结处理工艺是在大气中采用埋烧的方式进行,具体地,以10℃/min的升温速率将光固化成型素坯升温至700℃,保温1h;然后以7℃/min升温速率将光固化成型素坯升温至1700℃,保温10h,然后随炉冷至室温,得到多孔陶瓷材料。4)向90g光固化3d打印浆料中以4:3的比例加入3g聚乙二醇和乙二醇得到混合液、再加入7g60wt%al2o3-40wt%tio2的混合粉末,进行充分的机械搅拌,得到粘度为3000mpa·s、固含量为8%的表面紫外线固化强化剂。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。5)利用涂布工艺将紫外线固化强化剂均匀涂覆于多孔陶瓷材料表面。6)利用紫外汞灯距离工件150mm照射,以在多孔陶瓷材料的表面形成光固化复合涂层,得到闭气孔陶瓷浮力材料。图2是本实施例制备的基于光固化3d打印成型的闭气孔陶瓷浮力材料的示意图,从图2中可以看出,光固化复合涂层可以使整个闭气孔陶瓷浮力材料的外表面获得100%的闭气孔率,因此,该闭气孔陶瓷浮力材料具有较小的体积吸水率。图3是图2所示结构在a-a1处的截面示意图,从横截面来看,本实施制备的闭气孔陶瓷浮力材料具有实测81.4%的孔隙率。另外,本实施例的有机-陶瓷复合涂层(即,光固化复合涂层)的厚度为100-200μm。本实施例制备的闭气孔陶瓷浮力材料的闭气孔率、平均孔隙率和抗压强度如表1所示。实施例2本实施例制备一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,具体步骤如下:1)配制粘度为52mpa·s、固含量为40%的光固化3d打印浆料。其中,以重量份计,光固化3d打印浆料的组成如下:高分子紫外光聚合物28重量份、活性稀释剂15重量份、纳米陶瓷粉2重量份、粘结剂25重量份、表面活性剂5重量份、分散剂10重量份、紫外光吸收剂15重量份(其中每重量份为10g)。其中,高分子紫外光聚合物为双酚a二缩水油醚二环氧丙烯酸树脂和聚氨酯丙烯酸酯以2:1的比例混合树脂、活性稀释剂为二缩丙二醇二丙烯酸酯、纳米陶瓷粉为tio2和wc任意比例混合得到的混合粉、表面活性剂为甲基丙烯酰氧基硅烷偶联剂、分散剂为乙酸乙酯、粘结剂为巴斯夫819,紫外光吸收剂为uv-234。2)使用波长为450nm的光固化陶瓷3d打印机把910g光固化3d打印浆料进行光固化成型制备,得到光固化成型素坯;其中,扫描速度为1500mm/s,扫描方式为x-y,扫描间距为0.2mm。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。3)对光固化成型素坯依次进行脱脂、烧结处理。其中,脱脂处理工艺是在氮气气氛的排胶炉中进行,具体地,以5℃/min的升温速率将光固化成型素坯升温至800℃,然后保温3h后随炉冷却至室温。烧结处理工艺是采用在大气中埋烧的方式进行,具体地,以5℃/min的升温速率将光固化成型素坯升温至600℃,保温1h;然后以4℃/min升温速率将光固化成型素坯升温至1200℃,保温4h,然后随炉冷至室温,得到多孔陶瓷材料。4)向90g光固化3d打印浆料中以7:3比例加入1g甘露醇和硬脂酸获得混合溶液、再将9g70wt%sio2-30wt%zro2的混合粉末,进行充分的机械搅拌,得到粘度为1000mpa·s、固含量为20%的表面紫外线固化强化剂。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。5)利用刷凃工艺将紫外线固化强化剂均匀涂覆于多孔陶瓷材料表面。6)利用紫外汞灯距离工件150mm照射,以在多孔陶瓷材料的表面形成光固化复合涂层,得到光固化成型的闭气孔陶瓷浮力材料。本实施例制备的基于光固化3d打印成型的闭气孔陶瓷浮力材料的外表面获得100%的闭气孔,使得该闭气孔陶瓷浮力材料具有较小的体积吸水率。本实施制备的闭气孔陶瓷浮力材料具有实测89.3%的孔隙率。本实施例的有机-陶瓷复合涂层(即,光固化复合涂层)的厚度为100-150μm。本实施例制备的闭气孔陶瓷浮力材料的闭气孔率、平均孔隙率和抗压强度如表1所示。实施例3本实施例制备一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,具体步骤如下:1)配制粘度为40mpa·s、固含量为50%的光固化3d打印浆料。其中,以重量份计,光固化3d打印浆料的组成如下:高分子紫外光聚合物38重量份、活性稀释剂12重量份、纳米陶瓷粉20重量份、粘结剂17重量份、表面活性剂3重量份、分散剂9重量份、紫外光吸收剂1重量份(其中每重量份为10g)。其中,高分子紫外光聚合物为双酚a二缩水油醚二环氧丙烯酸树脂和缩水甘油胺类环氧树脂以3:1混合树脂、活性稀释剂为三环癸基二甲醇二丙烯酸酯和二缩丙二醇二丙烯酸酯以3:4混合溶液、纳米陶瓷粉为tin粉、表面活性剂为环氧羟基硅烷偶联剂、分散剂为正辛醇、粘结剂为巴斯夫819,紫外光吸收剂为uv-234。2)使用波长为405nm的光固化陶瓷3d打印机把910g光固化3d打印浆料进行光固化成型制备,得到光固化成型素坯;其中,扫描速度为2000mm/s,扫描方式为x-y,扫描间距为0.3mm。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。3)对光固化成型素坯依次进行脱脂、烧结处理。其中,脱脂处理工艺是在氮气气氛的排胶炉中进行,具体地,以4℃/min的升温速率将光固化成型素坯升温至700℃,然后保温6h后随炉冷却至室温。烧结处理工艺是采用在大气中埋烧的方式进行,具体地,以8℃/min的升温速率将光固化成型素坯升温至650℃,保温1h;然后以6℃/min升温速率将光固化成型素坯升温至1500℃,保温8h,然后随炉冷至室温,得到多孔陶瓷材料。4)向90g光固化3d打印浆料中以4:5的比例加入2g甘露醇和硬脂酸获得混合溶液、在加入8g50wt%cao-50wt%mgo的混合粉末,进行充分的机械搅拌,得到粘度为2500mpa·s、固含量为16%的表面紫外线固化强化剂。其中,该步骤中所使用的光固化3d打印浆料参见步骤1)所配制的光固化3d打印浆料。5)利用刷凃工艺将紫外线固化强化剂均匀涂覆于多孔陶瓷材料表面。6)利用紫外汞灯距离工件150mm照射,以在多孔陶瓷材料的表面形成光固化复合涂层,得到光固化成型的闭气孔陶瓷浮力材料。本实施例制备的基于光固化3d打印成型的闭气孔陶瓷浮力材料的外表面获得100%的闭气孔,使得该闭气孔陶瓷浮力材料具有较小的体积吸水率。本实施制备的闭气孔陶瓷浮力材料具有实测79%的孔隙率。本实施例的有机-陶瓷复合涂层(即,光固化复合涂层)的厚度为250-350μm。本实施例制备的闭气孔陶瓷浮力材料的闭气孔率、平均孔隙率和抗压强度如表1所示。比较例1比较例1是采用微珠与发泡树脂制备的微珠/泡孔复合结构浮力材料。使用质量分数为60g的直径120μm微珠,2g的1,1-二氯-1-氟乙烷,0.1g的水以及23.9g环氧树脂、12g的交联剂、2g的均泡剂混合,获得泡孔直径为40μm的微珠/泡孔复合结构浮力材料。本比较例制备的浮力材料的闭气孔率、平均孔隙率和抗压强度如表1所示。表1为实施例1-实施例3、比较例1所述制备的浮力材料的闭气孔率、平均孔隙率和抗压强度数据。表1检测项目闭气孔率平均孔隙率抗压强度实施例1100%81.4%132.4mpa实施例2100%89.3%138.7mpa实施例3100%79%141.2mpa比较例182.1%68.3%8.9mpa从表1可以看出:与比较例1相比,本发明实施例制备的基于光固化3d打印成型的闭气孔陶瓷浮力材料的闭气孔率为100%,平均孔隙率高,且抗压强度大于130mpa。以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。当前第1页1 2 3 
    技术特征:

    1.一种基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,所述制备方法包括如下步骤:

    制备光固化成型素坯步骤:采用光固化3d打印机对光固化3d打印浆料进行光固化成型,得到光固化成型素坯;

    脱脂、烧结处理步骤:对所述光固化成型素坯进行脱脂、烧结处理,得到多孔陶瓷材料;

    涂覆步骤:在所述多孔陶瓷材料的表面涂覆紫外线固化强化剂,得到表面涂覆有紫外线固化强化剂的多孔陶瓷材料;其中,所述紫外线固化强化剂包括光固化3d打印浆料、改性剂及强化剂;

    紫外线固化处理步骤:对所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料进行紫外线固化处理,以在所述多孔陶瓷材料的表面形成光固化复合涂层,得到闭气孔陶瓷浮力材料。

    2.根据权利要求1所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,所述改性剂为聚乙二醇、乙二醇、甘露醇、硬脂酸、脂肪族叔胺、乙醇胺类叔胺、叔胺型苯甲酸酯中的一种或几种;和/或

    所述强化剂为sio2、al2o3、zro2、tio2、cao、mgo中的一种或几种。

    3.根据权利要求1或2所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,所述紫外线固化强化剂的粘度为1000-3000mpa·s、固含量为8-20%;和/或

    在所述紫外线固化强化剂中:所述3d打印浆料、改性剂、强化剂的质量比为9:(0.1-0.3):(0.7-0.9);和/或

    所述紫外线固化强化剂是由光固化3d打印浆料、改性剂及强化剂组成。

    4.根据权利要求1-3任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,所述光固化3d打印浆料的粘度为40-55mpa·s;和/或

    所述光固化3d打印浆料的固含量为40-60%。

    5.根据权利要求1-4任一项所述的基于光固化3d成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,以重量份数计,所述光固化3d打印浆料由以下原料配制而成:高分子紫外光聚合物20-40重量份、活性稀释剂10-15重量份、纳米陶瓷粉2-25重量份、粘结剂10-25,表面活性剂1-5重量份,分散剂1-10重量份,紫外光吸收剂1-15重量份;

    优选的,所述高分子紫外光聚合物为纯丙烯酸酯、环氧丙烯酸酯、双酚a二缩水油醚二环氧丙烯酸树脂、聚氨酯丙烯酸酯、双酚a二缩水油醚二环氧树脂、缩水甘油胺类环氧树脂中的一种或几种;

    优选的,所述活性稀释剂为三环癸基二甲醇二丙烯酸酯、二缩丙二醇二丙烯酸酯中的一种或两种;

    优选的,所述纳米陶瓷粉为sio2、al2o3、tio2、wc、tin、zro2中的一种或几种,其中陶瓷粉末粒径为10-20nm;

    优选的,所述表面活性剂选自氨羟基硅烷偶联剂、甲基丙烯酰氧基硅烷偶联剂、环氧羟基硅烷偶联剂、钛酸酯偶联剂中的一种或几种;

    优选的,所述分散剂为聚乙二醇、乙酸乙酯、正辛醇、油酸中的一种或几种;

    优选的,所述粘结剂为巴斯夫184、巴斯夫819、巴斯夫256、巴斯夫1173中的一种或几种;

    优选的,所述紫外光吸收剂为uv-234、uv-326、uv-328中的一种或几种。

    6.根据权利要求1-5任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,在所述制备光固化成型素坯步骤中:

    所述光固化成型的波长是365-450nm、扫描速度为1500-2870mm/s,扫描方式为x-y、扫描间距为0.2-0.4mm。

    7.根据权利要求1-6任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,在所述脱脂、烧结处理步骤中:

    所述脱脂处理步骤包括:在氮气或惰性气体的气氛下,以1-5℃/min升温速率将所述光固化成型素坯加热至500-800℃,保温3-7h后冷却至室温;优选的,所述脱脂处理步骤是在排胶炉中进行;和/或

    所述烧结处理步骤包括:先以5-10℃/min的升温速率将所述脱脂处理后的光固化成型素坯加热至600-700℃,保温1h;再以4-7℃/min的升温速率将所述光固化成型素坯加热至1200-1700℃,保温4-10h后,冷却至室温;优选的,所述烧结处理步骤是在氮气、惰性气体、大气中任一种气氛中埋烧的烧结炉中进行。

    8.根据权利要求1-7任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,在所述涂覆步骤中:采用涂布工艺或刷涂工艺将紫外线固化强化剂均匀涂覆于所述多孔陶瓷材料的表面。

    9.根据权利要求1-7任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法,其特征在于,在所述紫外线固化处理步骤中:利用紫外汞灯照射所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料;其中,紫外汞灯与所述表面涂覆有紫外线固化强化剂的多孔陶瓷材料之间的距离为150-200mm。

    10.一种基于光固化3d打印成型的闭气孔陶瓷浮力材料,其特征在于,所述闭气孔陶瓷浮力材料包括:基于光固化3d打印成型的多孔陶瓷材料和在所述多孔陶瓷材料表面制备的光固化复合涂层;

    优选的,所述闭气孔陶瓷浮力材料的闭气孔率为100%;优选的,所述闭气孔陶瓷浮力材料的抗压强度超过130mpa;

    优选的,所述闭气孔陶瓷浮力材料是由权利要求1-9任一项所述的基于光固化3d打印成型的闭气孔陶瓷浮力材料的制备方法制备而成。

    技术总结
    本发明是关于一种基于光固化3D打印成型的闭气孔陶瓷浮力材料及制备方法。基于光固化3D打印成型的闭气孔陶瓷浮力材料的制备方法,包括如下步骤:采用光固化3D打印机对光固化3D打印浆料进行光固化成型,得到光固化成型素坯;对光固化成型素坯进行脱脂、烧结处理,得到多孔陶瓷材料;在多孔陶瓷材料的表面涂覆紫外线固化强化剂,得到表面涂覆有紫外线固化强化剂的多孔陶瓷材料;其中,紫外线固化强化剂包括光固化3D打印浆料、改性剂及强化剂;对表面涂覆有紫外线固化强化剂的多孔陶瓷材料进行紫外线固化处理,以在多孔陶瓷材料的表面形成光固化复合涂层,得到闭气孔陶瓷浮力材料。本发明主要用于制备一种孔隙率高、强度优异的浮力材料。

    技术研发人员:李金国;李乔磊;梁静静;周亦胄;孙晓峰;杨树林
    受保护的技术使用者:中国科学院金属研究所
    技术研发日:2020.11.19
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-21790.html

    最新回复(0)