本发明涉及磁性材料技术领域,更具体的说是涉及一种大型sq型锰锌铁氧体磁芯及制备方法。
背景技术:
近年来,随着各类电子产品的快速发展,电磁环境越来越复杂,国家对电子产品的电磁兼容性(emc/emi)提出了越来越高的要求,几乎所有的电子产品都被要求装配抗电磁干扰(emi)的元件。作为抗电磁干扰的主要指标之一的高频高阻抗抗emi锰锌铁氧体磁性组件,其市场前景良好。
随着sq型扁平线的逐步推广,其生产效率快,绕线规则,目前主要作为共模电感应用在开关电源、显示器上,代替中小磁环的使用,其对于磁芯行业实现自动化生产具有重要意义。
sq型磁芯相对于传统磁环、uu型磁芯等具有明显优势,其具有体积小,电流大,分布电容小,散热好,emi效果更理想的特点。采用自动化生产作业对其进行生产较容易排线整齐,无交叉等异常,生产效率高,稳定性更好,。大型sq型的产品可以作为共模,甚至改变形状作为差模电感使用,代替中大型磁环,能够在空调等领域应用。但现有技术中的sq型磁芯往往尺寸较小,只能替代小型磁芯,应用在开关电源、显示器等方面,因此,现有技术中的sq型磁芯应用范围仍然较小。
因此,如何提供一种应用范围广的sq型磁芯是本领域技术人员亟需解决的问题。
技术实现要素:
有鉴于此,本发明提供了一种应用范围广的大型sq型锰锌铁氧体磁芯及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o368-70%、mn3o414-16%、zno14-16%、pva胶0.7-0.9%和添加剂0.1%;
其中粒径为60-160目的原料重量百分比为80-90%,其余原料粒径大于160目。
有益效果:本发明中的sq型磁芯为用来代替大磁环sq2831,大型sq型宽频高阻抗磁芯属于异形产品,对于粉料的要求和成型工艺具有较高的要求。产品小型化时缺陷表现并不明显,但是针对目前在研发大型的sq就会出现直观表现,压制密度偏离,导致产品变形。所以在选取粉料及压制设备时,需认真选择。本发明中粗细粒度比85:15(60-160目为粗,>160目为粗),由不同大小的颗粒组成,其中,小颗粒容易填充在大颗粒之间,同时不影响其流动性,弹性后效也会较小,易于压制出高密度的坯件。
优选的,所述添加剂为tio2、co2o3、nb2o5、cuo和al2o3中的一种或几种。
有益效果:上述添加剂的添加可以改善铁氧体电磁特性,使铁氧体的内禀特性和微观结构得到改善,从而改善铁氧体电磁特性,达到提高磁导率,改变起始磁导率的温度特性目的。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,以1-1.5℃/min升温速率升温至180-220℃后,以0.5-0.8℃/min的速率升温至580-620℃,再以1.5-2℃/min的速率升温至880-920℃,然后在低氧条件下按照速率1.5-2.5℃/min升温至1050-1150℃进行烧结,直至混合物氧分压低于2%,再次以2-3℃/min的速率升温至1350-1450℃保温进行富氧烧结,最后在氧分压系数7.5-8的条件下降温后成型。
有益效果:从烧结设备的选择、温度曲线的确定等方面,都要经过合理的计划。一般情况,升温至180-220℃,主要是坯件内水分的挥发过程,为后续pva胶的挥发建立输出通道。180-500℃处于pva挥发阶段,此时应降低升温速率避免坯件开裂。此后是坯件逐渐收缩-膨胀-收缩过程,升温速率可适当提高。但在在900-1200℃,此时zn离子会大量挥发,影响磁芯晶粒的大小、均匀性、气孔率及分布等,需要升温速率需适当。
优选的,所述烧结过程中体系压力为0.2-0.5kpa。
优选的,常温升温至880-920℃的烧结过程中进风量为50-60m3/h,所述低氧条件为氮气环境下,且以140-160m3/h的进风量通入氮气。
有益效果:其他的主要控制指标进风54m3/h、升温致密化氧含量2%、窑压0.2-0.5kpa、温度的一致性、内循环均匀性,减少产品变形、粘连和开裂
优选的,所述富氧烧结为向体系中充入空气,在氧含量20-21%条件下进行烧结。
优选的,所述氧分压与温度的关系为lgp(o2)=a/t b;
其中,p(o2)为氧分压;
a=-14540;
b为氧分压系数;
t为绝对温度。
有益效果:本发明中控制温度和氧分压的关系为:lgp(o2)=a/t b(其中,a、b为常数,b为氧分压系数,p(o2)为氧分压,t为绝对温度,a=-14540,b=7.5-8)。本发明选取b=7.5-8,使用自动化窑炉控制窑内平衡气氛,到保温结束软磁铁氧体已形成,固相组成fefe2o4、znfe2o42、mnfe2o4已形成,通过平衡气氛控制达到最佳特性。
优选的,所述降温速率为1.5-2.5℃/min。
优选的,所述成型为双向压制成型。
有益效果:在粉料一定的情况下,成型的质量起到至关重要的作用。本发明采用双向压制成型,即“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压。同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,能够使坯件的密度均匀性达到最佳,降低产品出现变形的几率。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种一种大型sq型锰锌铁氧体磁芯及其制备方法,在原有干法工艺生产关键技术的支持下,本发明针对高频、高阻抗、低功耗材料进行生产:采用良好的基础配方和添加剂组合相搭配,同时限定适合的烧结气氛曲线以及严格的工艺控制与管理,最终制得新的宽频高阻抗材料。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面通过具体实施案例来对本发明进行进一步解释说明。
实施例1
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o369%、mn3o416%、zno14.2%、pva胶0.7%和添加剂0.1%;
添加剂为tio2、co2o3、nb2o5、cuo和al2o3任意比例的混合物;
其中粒径为60-160目的原料重量百分比为85%,其余原料粒径大于160目。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将上述fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,保持体系压力为0.2-0.5kpa,进风量为54m3/h,以1.2℃/min升温速率升温至200℃后,以0.5-0.8℃/min的速率升温至600℃,再以1.78℃/min的速率升温至900℃,然后以150m3/h的进风量通入氮气,在低氧条件下按照速率2.0℃/min升温至1100℃进行烧结,直至混合物氧分压低于2%,再次向体系中充入空气,在氧含量20.6%条件下升温至1400℃保温进行富氧烧结,最后在b=7.8的条件下以2.0℃/min的速率降温,最后进行双压成型。双压成型即为“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压1.5s;同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,使坯件的密度均匀性达到最佳。
其中,氧分压系数计算方法为:lgp(o2)=a/t b
p(o2)为氧分压;
a、b为常数,
且a=-14540;
b为氧分压系数,本实施例中b=7.8;
t为绝对温度。
将上述扁平线绕线后,测试产品成品,绕线圈数23ts。
关于以上技术方案得到的大型sq型锰锌铁氧体磁芯所能够达到的技术效果如表1所示。
表1
实施例2
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o368%、mn3o415.9%、zno14.8%、pva胶0.8%和添加剂0.1%;
添加剂为tio2、co2o3、nb2o5、cuo和al2o3任意比例的混合物;
其中粒径为60-160目的原料重量百分比为80%,其余原料粒径大于160目。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将上述fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,保持体系压力为0.2-0.5kpa,进风量为50m3/h,以1.0℃/min升温速率升温至180℃后,以0.5℃/min的速率升温至580℃,再以1.5℃/min的速率升温至880℃,然后以140m3/h的进风量通入氮气,在低氧条件下按照速率1.5℃/min升温至1050℃进行烧结,直至混合物氧分压低于2%,再次向体系中充入空气,在氧含量20%条件下升温至1350℃保温进行富氧烧结,最后在氧分压系数7.5的条件下以1.5℃/min的速率降温,最后进行双压成型。双压成型即为“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压1.5s;同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,使坯件的密度均匀性达到最佳。
其中,氧分压系数计算方法为:lgp(o2)=a/t b
p(o2)为氧分压;
a、b为常数,
且a=-14540;
b为氧分压系数,本实施例中b=7.5;
t为绝对温度。
将上述扁平线绕线后,测试产品成品,绕线圈数23ts。
关于以上技术方案得到的大型sq型锰锌铁氧体磁芯所能够达到的技术效果如表1所示。
表1
实施例3
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o370%、mn3o415%、zno14%、pva胶0.9%和添加剂0.1%;
添加剂为tio2、co2o3、nb2o5、cuo和al2o3任意比例的混合物;
其中粒径为60-160目的原料重量百分比为90%,其余原料粒径大于160目。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将上述fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,保持体系压力为0.2-0.5kpa,进风量为60m3/h,以1.5℃/min升温速率升温至220℃后,以0.8℃/min的速率升温至620℃,再以2℃/min的速率升温至920℃,然后以160m3/h的进风量通入氮气,在低氧条件下按照速率2.5℃/min升温至1150℃进行烧结,直至混合物氧分压低于2%,再次向体系中充入空气,在氧含量21%条件下升温至1450℃保温进行富氧烧结,最后在氧分压系数8.0的条件下以2.5℃/min的速率降温,最后进行双压成型。双压成型即为“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压1.5s;同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,使坯件的密度均匀性达到最佳。
其中,氧分压系数计算方法为:lgp(o2)=a/t b
p(o2)为氧分压;
a、b为常数,
且a=-14540;
b为氧分压系数,本实施例中b=8.0;
t为绝对温度。
将上述扁平线绕线后,测试产品成品,绕线圈数23ts。
关于以上技术方案得到的大型sq型锰锌铁氧体磁芯所能够达到的技术效果如表1所示。
表1
实施例4
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o368.5%、mn3o415.3%、zno15.4%、pva胶0.7%和添加剂0.1%;
添加剂为tio2、co2o3、nb2o5、cuo和al2o3任意比例的混合物;
其中粒径为60-160目的原料重量百分比为82%,其余原料粒径大于160目。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将上述fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,保持体系压力为0.2-0.5kpa,进风量为52m3/h,以1.3℃/min升温速率升温至190℃后,以0.6℃/min的速率升温至600℃,再以1.78℃/min的速率升温至890℃,然后以150m3/h的进风量通入氮气,在低氧条件下按照速率1.8℃/min升温至1080℃进行烧结,直至混合物氧分压低于2%,再次向体系中充入空气,在氧含量21%条件下升温至1390℃保温进行富氧烧结,最后在b=7.8的条件下以1.8℃/min的速率降温,最后进行双压成型。双压成型即为“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压1.5s;同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,使坯件的密度均匀性达到最佳。
其中,氧分压系数计算方法为:lgp(o2)=a/t b
p(o2)为氧分压;
a、b为常数,
且a=-14540;
b为氧分压系数,本实施例中b=7.8;
t为绝对温度。
将上述扁平线绕线后,测试产品成品,绕线圈数23ts。
关于以上技术方案得到的大型sq型锰锌铁氧体磁芯所能够达到的技术效果如表1所示。
表1
实施例5
一种大型sq型锰锌铁氧体磁芯,包括以下重量百分比的原料:
fe2o369.4%、mn3o414.7%、zno15%、pva胶0.8%和添加剂0.1%;
添加剂为tio2、co2o3、nb2o5、cuo和al2o3任意比例的混合物;
其中粒径为60-160目的原料重量百分比为87%,其余原料粒径大于160目。
一种大型sq型锰锌铁氧体磁芯的制备方法,包括以下步骤:
将上述fe2o3、mn3o4、zno、pva胶和添加剂的粉末混合,保持体系压力为0.2-0.5kpa,进风量为58m3/h,以1.3℃/min升温速率升温至210℃后,以0.7℃/min的速率升温至610℃,再以1.9℃/min的速率升温至910℃,然后以150m3/h的进风量通入氮气,在低氧条件下按照速率2.3℃/min升温至1130℃进行烧结,直至混合物氧分压低于2%,再次向体系中充入空气,在氧含量20.6%条件下升温至1420℃保温进行富氧烧结,最后在b=7.8的条件下以2.2℃/min的速率降温,最后进行双压成型。双压成型即为“一上两下”压制方式,上凸模下行,下凸模上行,进行第一次压制;上、下凸模一起下行保压1.5s;同时反复调整上凸模进入凹模的深度、上凸模与凹模同时下行距离和上凸模再次下压的深度,使坯件的密度均匀性达到最佳。
其中,氧分压系数计算方法为:lgp(o2)=a/t b
p(o2)为氧分压;
a、b为常数,
且a=-14540;
b为氧分压系数,本实施例中b=7.8;
t为绝对温度。
将上述扁平线绕线后,测试产品成品,绕线圈数23ts。
关于以上技术方案得到的大型sq型锰锌铁氧体磁芯所能够达到的技术效果如表1所示。
表1
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
1.一种大型sq型锰锌铁氧体磁芯,其特征在于,包括以下重量百分比的原料:
fe2o368-70%、mn3o414-16%、zno14-16%、pva胶0.7-0.9%和添加剂0.1%;且所述原料中粒径为60-160目重量百分比为80-90%,剩余原料粒径大于160目。
2.根据权利要求1所述的一种大型sq型锰锌铁氧体磁芯,其特征在于,所述添加剂为tio2、co2o3、nb2o5、cuo和al2o3中的一种或几种的混合。
3.如权利要求1和2任一所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,包括以下步骤:
将fe2o3、mn3o4、zno、pva胶和添加剂混合,并以1-1.5℃/min升温速率至180-220℃后,以0.5-0.8℃/min升温速率至580-620℃,再以1.5-2℃/min升温速率至880-920℃,然后烧结过程中在低氧条件下以1.5-2.5℃/min升温速率至1050-1150℃进行烧结,直至混合物中氧分压低于2%;
烧结完毕后以2-3℃/min升温速率至1350-1450℃保温进行富氧烧结5-7h,最后在氧分压系数7.5-8的条件下降温至170-230℃成型。
4.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,所述烧结过程中体系压力为0.2-0.5kpa。
5.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,常温升温至880-920℃的烧结过程中进风量为50-60m3/h,所述低氧条件为氮气环境下,且以140-160m3/h的进风量通入氮气。
6.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,所述富氧烧结是在氧气体积浓度为20-21%条件下进行的。
7.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,所述氧分压与温度的关系为lgp(o2)=a/t b;
其中,p(o2)为氧分压;
a=-14540;
b为氧分压系数;
t为绝对温度。
8.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,所述降温速率为1.5-2.5℃/min。
9.根据权利要求3所述的一种大型sq型锰锌铁氧体磁芯的制备方法,其特征在于,所述成型为双向压制成型。
技术总结