一种立体车库推荐方法与流程

    专利2022-07-08  171


    本发明属于交通智能自动化领域领域,涉及一种立体车库推荐方法。
    背景技术
    :随着社会经济与汽车工业的发展,汽车保有量急速增长,给居民出行带来极大便利的同时,也给城市交通管理以及公共停车设施建设带来了巨大的压力。库容量大且占地面积小的立体车库应运而生,成为解决“停车难”问题的有效方式。立体车库相较于传统的平面车库具有诸多优势,在我国一些经济发达且人口密度较大的城市已经开始大力发展立体车库。当前我国立体车库已经朝着智能化、网络化、人性化水平发展,已经有不少学者开始研究立体车库管理系统,旨在提高立体车库服务效能。当系统接入大量车库供用户选择预约时,为了提高停车效率,减少用户车库选择时间,有必要提供一种立体车库推荐方法。在车库的推荐问题上,从不同的角度分析,会有不同的推荐策略。有学者根据一种经典网络搜索算法(pagerank算法)的思想,设计了一种静态的停车等级算法,根据停车等级向司机推荐停车场。也有学者提出结合距离、空位率、收费标准和交通状况四个条件,通过基于bpr的最优推荐算法,为用户推荐性价比最高的停车场。在不知道车库实时剩余车位数量的情况下,不少学者着重于对车位的使用状态进行预测,以到达停车场成功停车的概率来为用户推荐停车场。本课题基于物联网技术,可以实时获取到车位剩余数量,在此基础上研究车库推荐策略。由于车库推荐问题具有缺乏历史数据、候选方案数量有限甚至较少、实时性强等特点,因此不适合用传统的推荐算法,如基于内容的推荐、基于用户的推荐进行求解。一些学者通过对用户选择车库相关因素进行分析和量化,来为用户推荐满足期望的车库。技术实现要素:针对上述问题,本发明提供了一种立体车库推荐方法,通过使用geohash算法筛选出候选车库,根据候选车库的各属性值,基于多属性决策,建立相关模型,即可计算出最优车库。本发明的技术方案是:一种立体车库推荐方法,具体步骤包括如下:步骤(1)、分析用户停车选择行为,确定用户的车库选择因素,作为车库的评价指标,包括行驶距离d、驾车时间t、步行距离w、停车单价p以及剩余车位数量n;步骤(2)、根据目的地和最远步行距离,基于geohash算法筛选出候选车库;步骤(3)、获取筛选出的候选车库的属性值,包括:行驶距离d、驾车时间t、步行距离w、停车单价p以及剩余车位数量n,根据候选车库的属性值生成决策矩阵;步骤(4)、采用极差变换法对决策矩阵进行规范化;步骤(5)、确定属性组合权重;步骤(6)、基于多属性决策对候选车库进行排序,得出最优车库。进一步的,在所述步骤(2)中,基于geohash算法筛选出候选车库具体操作步骤如下:(2.1)、基于geohash算法,对目的地经纬度进行编码,得到目的地的geohash值;(2.2)、根据目的地的geohash值求出目的地周围八个区域的geohash值;(2.3)、根据geohash值得到预选车库,依次计算这些车库与目的地的距离,筛选出距离小于给定值的车库作为候选车库。进一步的,在步骤(5)中,所述属性组合权重的计算步骤如下:(5.1)、基于层次分析法确定主观权重w=[w1,w2,λ,wn];(5.2)、基于熵值法确定客观权重v=[v1,v2,λ,vn];(5.3)、根据最小熵原理由主观权重w和客观权重v求解组合权重λ,以λj和wj以及vj尽可能接近为原则得:式中,f表示熵;n表示权重个数;j表示第j个权重;λj表示第j个组合权重;wj表示第j个主观权重;vj表示第j个客观权重;根据拉格朗日乘子法求解上述问题得:式中,m表示权重个数。进一步的,在步骤(5.1)中,所述基于层次分析法确定主观权重w=[w1,w2,λ,wn];其具体步骤如下:(5.1.1)、将决策目标、决策影响因素以及决策对象按照之间的关系分为表示决策要解决问题的最高层、表示决策影响因素的中间层以及表示备选方案的最底层;(5.1.2)、所有元素进行两两比较判断相对重要程度,按照重要程度划分为1~m个等级,构造判断矩阵;(5.1.3)、求取判断矩阵的最大特征根λmax和对应的特征向量w,用下式求出判断矩阵的一致性指标ci,式中n表示因素个数,定义一致性比率一致性比率小于0.1通过一致性检验,否则对判断矩阵进行调整,通过检验后将特征向量进行归一化后得到主观权重w;进一步的,在步骤(5.2)中,所述的基于熵值法确定客观权重v=[v1,v2,λ,vn];其具体步骤如下:(5.2.1)、基于规范后的决策矩阵x=(xij)m×n,根据下式计算第j个指标在所有样本中的所占的比重yij;式中,xij表示规范后的第i个候选车库的第j个指标的决策属性值;yij表示第j个指标在所有样本中的所占比重;(5.2.2)、根据下式分别计算第j个指标的信息熵值ej和信息效用值dj;dj=1-ej(5.2.3)、根据下式计算第j项指标的权重,其中,xij表示第i个方案的第j个属性的初始决策指标值;进一步的,在步骤(6)中,所述基于多属性决策对候选车库进行排序的具体操作步骤如下:(6.1)、由下式计算加权标准化矩阵,u=(uij)m×n=(λjxij)m×n式中,λj为第j个指标的组合权重;u表示加权标准化矩阵;uij表示加权标准化矩阵第i行j列值;(6.2)、根据标准化矩阵中的行向量,获取最优值向量和最劣值向量;其中,最优值解:u =(ui1 ,ui2 ,λ,uin ),uij =max(uij),j=1,2,λ,m最劣值解:u-=(ui1-,ui2-,λ,uin-),uij-=min(uij),j=1,2,λ,m(6.3)、计算每个对象与最优解和最劣解的欧式距离di 与di-,并计算各个评价对象与最优解的接近度ci;本发明的有益效果是:本发明公开了一种立体车库推荐方法,通过geohash算法筛选出候选车库,避免了大量的计算过程,提高了计算效率。基于多属性决策,首先获取候选车库的属性值,根据候选车库的相关属性值生成决策矩阵并进行规范化,采用组合赋权法得到权重,最后基于理想点法计算出最优车库,为有停车需求的用户推荐目的地附近最优的车库,提高了用户的停车效率。附图说明图1为本发明的流程示意图;图2为本发明中具体实施方式中的实际场景图之一;图3为本发明中具体实施方式中的实际场景图之二。具体实施方式为了更清楚地说明本发明的技术方案,下面结合附图对本发明的技术方案做进一步的详细说明:一种立体车库推荐方法,具体步骤包括如下:步骤(1)、分析用户停车选择行为,确定用户的车库选择因素,将各个因素作为车库的评价指标,此处选择选择行驶距离d、驾车时间t、步行距离w、停车单价p以及剩余车位数量n进行分析;步骤(2)、根据目的地和最远步行距离,基于geohash算法筛选出候选车库;具体的,基于geohash算法筛选出候选车库具体操作步骤如下:(2.1)、基于geohash算法,对目的地经纬度进行编码,得到目的地的geohash值;(2.2)、根据目的地的geohash值求出目的地周围八个区域的geohash值;(2.3)、根据geohash值得到预选车库,依次计算这些车库与目的地的距离,筛选出距离小于给定值的车库作为候选车库,此处假设候选车库有四个,{a,b,c,d},各车库的各属性值如表1所示:表1:候选车库属性值表候选车库d(km)t(h)w(km)p(元)n(个)a6.20.500.501013b5.80.440.6599c6.60.620.48816d6.00.480.521012步骤(3)、获取筛选出的候选车库的属性值,包括:行驶距离d、驾车时间t、步行距离w、停车单价p以及剩余车位数量n,根据候选车库的属性值生成决策矩阵,此处决策矩阵为:步骤(4)、采用极差变换法对决策矩阵进行规范化;将初始决策矩阵规范化后得到:步骤(5)、确定属性组合权重;具体的,所述属性组合权重的计算步骤如下:(5.1)、基于层次分析法确定主观权重w=[w1,w2,λ,wn];(5.2)、基于熵值法确定客观权重v=[v1,v2,λ,vn];(5.3)、根据最小熵原理由主观权重w和客观权重v求解组合权重λ,以λj和wj以及vj尽可能接近为原则得:式中,f表示熵;n表示权重个数;j表示第j个权重;λj表示第j个组合权重;wj表示第j个主观权重;vj表示第j个客观权重;根据拉格朗日乘子法求解上述问题得:式中,m表示权重个数;在步骤(5.1)中,所述基于层次分析法确定主观权重w=[w1,w2,λ,wn];其具体步骤如下:(5.1.1)、将决策目标、决策影响因素以及决策对象按照之间的关系分为表示决策要解决问题的最高层、表示决策影响因素的中间层以及表示备选方案的最底层;(5.1.2)、所有元素进行两两比较判断相对重要程度,按照重要程度划分为1~m个等级,构造判断矩阵;其具体情况如下式所示:计算得权重向量为w=[0.110,0.220,0.336,0.292,0.042],最大特征根为5.0454,一致性指标随机一致性指标ri=1.12,一致性比率cr=0.01135/1.12=0.010<0.1,通过一致性检验;(5.1.3)、求取判断矩阵的最大特征根λmax和对应的特征向量w,用下式求出判断矩阵的一致性指标ci,式中n表示因素个数,定义一致性比率一致性比率小于0.1通过一致性检验,否则对判断矩阵进行调整,通过检验后将特征向量进行归一化后得到主观权重w;如表2所述:随机一致性指标ri表n12345678910ri000.580.901.121.241.321.411.451.49在步骤(5.2)中,所述的基于熵值法确定客观权重v=[v1,v2,λ,vn];其具体步骤如下:(5.2.1)、基于规范后的决策矩阵x=(xij)m×n,根据下式计算第j个指标在所有样本中的所占的比重yij;式中,xij表示规范后的第i个候选车库的第j个指标的决策属性值;yij表示第j个指标在所有样本中的所占比重;(5.2.2)、根据下式分别计算第j个指标的信息熵值ej和信息效用值dj;dj=1-ej表3各属性均值标准差表ej0.76470.78290.78780.45900.7465dj0.23530.21710.21220.54100.2535(5.2.3)、根据下式计算第j项指标的权重,其中,xij表示第i个方案的第j个属性的初始决策指标值,可确定客观权重为v=[0.161,0.149,0.145,0.371,0.174];进一步的,由主观权重w和客观权重v来求解组合权重λ,以λj和wj以及vj尽可能接近为原则,根据最小熵原理可得:根据拉格朗日乘子法求解上述问题,得:此处,根据已求出的主观权重和客观权重,可求得组合权重为λ=[0.140,0.191,0.232,0.347,0.090];步骤(6)、基于多属性决策对候选车库进行排序,得出最优车库。所述基于多属性决策对候选车库进行排序的具体操作步骤如下:(6.1)、由下式计算加权标准化矩阵,u=(uij)m×n=(λjxij)m×n式中,λj为第j个指标的组合权重;u表示加权标准化矩阵;uij表示加权标准化矩阵第i行j列值;此处,加权标准化矩阵(6.2)、根据标准化矩阵中的行向量,获取最优值向量和最劣值向量;其中,最优值解:u =(ui1 ,ui2 ,λ,uin ),uij =max(uij),j=1,2,λ,m最劣值解:u-=(ui1-,ui2-,λ,uin-),uij-=min(uij),j=1,2,λ,m此处,最优值解:u =(0.14,0.191,0.232,0.347,0.09),最劣值解:u-=(0,0,0,0,0);(6.3)、计算欧氏距离与接近度:计算每个对象与最优解和最劣解的欧式距离di 与di-,并计算各个评价对象与最优解的接近度ci;此处每个对象与最优解和最劣解的欧式距离di 与di-,以及接近度ci如表4所示,因此可求出最优车库为c;表4欧氏距离与接近度表abcddi 0.36280.30300.23690.3593di-0.25590.29390.42700.2564ci0.41360.49240.64320.4164具体实施例:叙述图2及图3:图2中,在地图上以图标的方式标记出车库,用户在搜索框中输入目的地,并点击车库推荐按钮,程序会根据获取到的用户当前位置信息,基于geohash算法,为用户获取当前位置附近的候选车库,并从数据库中获取候选车库的属性值,基于多属性决策,为用户生成综合最优车库推荐,如图3所示。图3共为用户提供5个车库推荐方案,包括综合最优,距离当前最近,距离目的地最近,剩余车位最多,价格最低,综合最优方案是本发明的较佳应用,距离当前最近车库和距离目的地最近车库分别以距离当前所在位置与距离目的地所在位置最优为目标,剩余车位最多方案以剩余车位数量为选择标准,价格最低方案为用户推荐价格最低的车库。上述只是本发明的较佳实施例,并非对本发明做任何形式上的限定。因此,凡是未脱离被技术方案的内容,依据本发明技术实质对以上实例所做的任何简单修改,等同变化和修饰。当前第1页1 2 3 
    技术特征:

    1.一种立体车库推荐方法,其特征在于,具体步骤包括如下:

    步骤(1)、分析用户停车选择行为,确定用户的车库选择因素,作为车库的评价指标,其包括行驶距离d、驾车时间t、步行距离w、停车单价p以及剩余车位数量n;

    步骤(2)、根据目的地和最远步行距离,基于geohash算法筛选出候选车库;

    步骤(3)、获取筛选出候选车库的属性值,根据候选车库的属性值生成决策矩阵;

    步骤(4)、采用极差变换法对决策矩阵进行规范化;

    步骤(5)、确定属性组合权重;

    步骤(6)、基于多属性决策对候选车库进行排序,得出最优车库。

    2.根据权利要求1所述的一种立体车库推荐方法,其特征在于,在所述步骤(2)中,基于geohash算法筛选出候选车库具体操作步骤如下:

    (2.1)、基于geohash算法,对目的地经纬度进行编码,得到目的地的geohash值;

    (2.2)、根据目的地的geohash值求出目的地周围八个区域的geohash值;

    (2.3)、根据geohash值得到预选车库,依次计算预选车库与目的地的距离,筛选出距离小于给定值的车库作为候选车库。

    3.根据权利要求1所述的一种立体车库推荐方法,其特征在于,在步骤(5)中,所述属性组合权重的计算步骤如下:

    (5.1)、基于层次分析法确定主观权重w=[w1,w2,λ,wn];

    (5.2)、基于熵值法确定客观权重v=[v1,v2,λ,vn];

    (5.3)、根据最小熵原理,由主观权重w和客观权重v求解组合权重λ,以λj和wj及vj三者接近为原则得下式:

    式中,f表示熵;n表示权重个数;j表示第j个权重;λj表示第j个组合权重;wj表示第j个主观权重;vj表示第j个客观权重;

    根据拉格朗日乘子法求解上述问题得:

    式中,m表示权重个数。

    4.根据权利要求3所述的一种立体车库推荐方法,其特征在于,在步骤(5.1)中,所述基于层次分析法确定主观权重w=[w1,w2,λ,wn];其具体步骤如下:

    (5.1.1)、将决策目标、决策影响因素及决策对象按照之间的关系分为表示决策要解决问题的最高层、表示决策影响因素的中间层及表示备选方案的最底层;

    (5.1.2)、所有元素进行两两比较判断相对重要程度,按照重要程度划分为1~m个等级,构造判断矩阵;

    (5.1.3)、求取判断矩阵的最大特征根λmax和对应的特征向量w,用下式求出判断矩阵的一致性指标ci,式中n表示因素个数,定义一致性比率一致性比率小于0.1通过一致性检验,否则对判断矩阵进行调整,通过检验后将特征向量进行归一化后得到主观权重w;

    5.根据权利要求3所述的一种立体车库推荐方法,其特征在于,在步骤(5.2)中,所述的基于熵值法确定客观权重v=[v1,v2,λ,vn];其具体步骤如下:

    (5.2.1)、基于规范后的决策矩阵x=(xij)m×n,根据下式计算第j个指标在所有样本中的所占的比重yij;

    式中,xij表示规范后的第i个候选车库的第j个指标的决策属性值;yij表示第j个指标在所有样本中的所占比重;

    (5.2.2)、根据下式分别计算第j个指标的信息熵值ej和信息效用值dj;

    dj=1-ej

    (5.2.3)、根据下式计算第j项指标的权重,其中,xij表示第i个方案的第j个属性的初始决策指标值;

    6.根据权利要求3所述的一种立体车库推荐方法,其特征在于,在步骤(6)中,所述基于多属性决策对候选车库进行排序的具体操作步骤如下:

    (6.1)、由下式计算加权标准化矩阵,

    u=(uij)m×n=(λjxij)m×n

    式中,λj为第j个指标的组合权重;u表示加权标准化矩阵;uij表示加权标准化矩阵第i行j列值;

    (6.2)、根据标准化矩阵中的行向量,获取最优值向量和最劣值向量;

    其中,最优值解:

    u =(ui1 ,ui2 ,λ,uin ),uij =max(uij),j=1,2,λ,m

    最劣值解:

    u-=(ui1-,ui2-,λ,uin-),uij-=min(uij),j=1,2,λ,m

    (6.3)、计算每个对象与最优解和最劣解的欧式距离di 与di-,并计算各个评价对象与最优解的接近度ci;

    技术总结
    本发明公开了一种立体车库推荐方法。属于交通智能自动化领域;在用户给定目的地和最远步行距离的条件下,具体步骤:1、分析用户停车选择行为,确定用户的车库选择因素,作为车库的评价指标;2、根据目的地和最远步行距离,基于Geohash算法筛选出候选车库;3、获取筛选出候选车库的属性值,根据候选车库的属性值生成决策矩阵;4、采用极差变换法对决策矩阵进行规范化;5、确定属性组合权重;6、基于多属性决策对候选车库进行排序,得出最优车库。本发明通过Geohash算法筛选出候选车库,避免了大量的计算过程,提高了计算效率。

    技术研发人员:牛丹;黄雪颖;陈夕松;王思敏;许翠红;陈善龙;陈有成
    受保护的技术使用者:南京云牛智能科技有限公司;江阴市智行工控科技有限公司;东南大学
    技术研发日:2020.10.30
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-21393.html

    最新回复(0)