本发明涉及半导体技术领域,尤其涉及一种以均苯为核心的有机化合物及其应用。
背景技术:
有机电致发光(oled:organiclightemissiondiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。oled发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成oled发光器件。作为电流器件,当对oled发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生oled电致发光。
构成oled器件的oled光电功能材料膜层至少包括两层以上结构,产业上应用的oled器件结构,则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于oled器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的oled器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现,也可能完全迥异。
因此,针对当前oled器件的产业应用要求,以及oled器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的oled功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。
技术实现要素:
针对现有技术存在的上述问题,本发明提供了一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用。本发明提供的有机化合物具有良好的热稳定性和较高的玻璃化温度,同时具有合适的homo能级,采用本发明提供的有机化合物的器件通过结构优化,可有效提升oled器件的光电性能以及oled器件的寿命。
具体技术方案如下:一种以均苯为核心的有机化合物,结构如通式(1)所示:
所述ar1-ar6分别独立的表示为取代或未取代的苯基、取代或未取代的菲基、取代或未取代的二甲基芴基、取代或未取代的二苯基芴基、取代或未取代的吡啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、通式(2)或通式(3)所示结构,且ar1-ar6中至少有三个表示为通式(2)或通式(3)所示结构;
l表示为亚苯基;
c1、c2表示为l通过单键与通式(2)的连接位点;
c3、c4表示为通式(1)通过单键与通式(3)的连接位点;
r1、r2分别独立的表示为氢原子、氘原子、叔丁基、甲基、乙基、丙基、甲氧基、氰基、氟原子、苯基、金刚烷基、联苯基或萘基;
所述可被取代基团的取代基任选自氘原子、氟原子、甲氧基、氰基、甲基、乙基、丙基、金刚烷基、异丙基、叔丁基、戊基、苯基、萘基、二联苯基、萘啶基或吡啶基中的一种或多种。
作为本发明进一步改进,所述ar1、ar2、ar3、ar4分别表示为通式(2)或通式(3)所示结构。
作为本发明进一步改进,所述ar1、ar2、ar3、ar5分别表示为通式(2)或通式(3)所示结构。
作为本发明进一步改进,所述ar1、ar2、ar3、ar4、ar5分别表示为通式(2)或通式(3)所示结构。
作为本发明进一步改进,所述ar1-ar6均表示为通式(2)或通式(3)所示结构。
作为本发明进一步改进,所述ar1、ar3、ar5分别表示为通式(2)或通式(3)时,通式(2)中l通过单键连接在c2位点,通式(1)通过单键连接在通式(3)的c4位点。
作为本发明进一步改进,所述化合物具体结构为:
本发明的第二个方面是提供上述以均苯为核心的有机化合物在制备有机电致发光器件中的应用。
本发明的第三个方面是提供一种有机电致发光器件,具有这样的特征,上述有机电致发光器件包括至少一层功能层,上述功能层含有所述以均苯为核心的有机化合物。
本发明的第四个方面是提供一种有机电致发光器件,包括空穴传输层,具有这样的特征,上述空穴传输层含有所述以均苯为核心的有机化合物。
本发明的第五个方面是提供一种有机电致发光器件,包括电子阻挡层,具有这样的特征,上述电子阻挡层含有所述以均苯为核心的有机化合物。
本发明的第六个方面是提供一种有机电致发光器件,具有这样的特征,上述有机电致发光器件包括空穴注入层、空穴传输层、电子阻挡层、发光层和电子传输区域,电子阻挡层邻接发光层,所述空穴注入层包括p-掺杂材料和通式(1)所述结构,空穴传输层包括与空穴注入层相同的有机材料。
本发明的第七个方面是提供一种有机电致发光器件,具有这样的特征,上述有机电致发光器件包括空穴注入层、空穴传输层、电子阻挡层、发光层和电子传输区域,电子阻挡层邻接发光层,所述空穴注入层包括p-掺杂材料和有机材料,空穴传输层包括与空穴注入层相同的有机材料,电子阻挡层包含通式(1)所示结构,电子阻挡层包含一种或两种材料。
本发明的第八个方面是提供一种全彩显示装置,其由下至上依次包括基板、第一电极、有机功能材料层和第二电极,所述有机功能材料层包括:空穴传输区域,其位于第一电极之上;发光层,其位于空穴传输区域之上,该发光层具有分别在一红色像素区域、一绿色像素区域和一蓝色像素区域被构图的一红色发光层、一绿色发光层和一蓝色发光层;电子传输区域,其位于发光层之上;其中所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层和电子阻挡层,所述空穴注入层包含p型掺杂材料,其中红色像素单元、绿色像素单元和蓝色像素单元具有共同的空穴注入层和空穴传输层,且具有各自的电子阻挡层,其中所述空穴传输区域包含通式(1)所述的以均苯为核心的有机化合物。
本发明的第九个方面是提供一种照明或显示元件,具有这样的特征,包括上述的有机电致发光器件。
上述方案的有益效果是:
本发明提供的化合物中含有较多的萘基,使得化合物具有较强的π共轭效应,使得本发明申请化合物具有很强的空穴传输能力,高的空穴传输速率能够有效降低器件的起始电压,提高有机电致发光器件的效率;且其中的三胺结构能够降低分子的结晶性,降低分子的平面性,阻止分子在平面上移动,从而提高分子的热稳定性;同时,本发明提供的化合物的结构使得电子和空穴在发光层的分布更加平衡,在恰当的homo能级下,提升了空穴注入和传输性能;在合适的lumo能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率,可降低器件在高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
而本发明化合物结构因含有三胺结构,且各支链交叉分布,使得分子间的距离变大,分子间相互作用力减弱,所以具有了较低的蒸镀温度,从而使得材料的工业加工窗口变宽。
现有量产材料
本发明的化合物在oled器件应用时,通过器件结构优化,可保持高的膜层稳定性,可有效提升oled器件的光电性能以及oled器件的寿命。本发明化合物在oled发光器件中具有良好的应用效果和产业化前景。
附图说明
图1为本发明所列举的材料应用于oled器件的结构示意图;
附图中:1为透明基板层,2为阳极层,3为空穴注入层,4为空穴传输,5为电子阻挡层,6为发光层,7为电子传输或空穴阻挡层,8为电子注入层,9为阴极反射电极层,10为光取出层。
图2为本发明化合物26的电流密度-电流效率曲线;
图3为本发明化合物26的电压-电流密度曲线。
具体实施方式
实施例1:化合物2的合成:
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol原料a-1,0.012mol的原料b-1,0.03mol叔丁醇钾,1×10-4molpd2(dba)3,1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体d-1;元素分析结构(分子式c38h27brn2):理论值c,77.16;h,4.60;n,4.74;br,13.51;测试值:c,77.15;h,4.59;n,4.75;br,13.52。esi-ms(m/z)(m ):理论值为590.14,实测值为590.18。250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体d-1,0.012mol的原料c-1,0.03mol叔丁醇钾,1×10-4molpd2(dba)3,1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标化合物i-6;元素分析结构(分子式c58h41n3):理论值c,89.31;h,5.30;n,5.39;测试值:c,89.33;h,5.29;n,5.38。esi-ms(m/z)(m ):理论值为779.33,实测值为779.42。1hnmr(500mhz,chloroform-d)δ8.04(dd,j=7.0,2.0hz,3h),7.84–7.75(m,8h),7.75–7.70(m,1h),7.54–7.41(m,10h),7.40(qd,j=7.2,1.9hz,2h),7.31(dd,j=7.5,1.5hz,1h),7.31–7.25(m,3h),7.28–7.19(m,5h),7.12–7.05(m,6h),6.53(s,2h).
以与实施例1相同的方法制备下列化合物(所用原料均采购于中节能万润有限公司),合成原料如下表1所示,目标化合物的核磁数据如表2所示;
表1
表2
本发明化合物在发光器件中使用,可以作为电子阻挡层材料,也可以作为空穴传输层材料使用。对本发明上述实施例制备的化合物分别进行热性能、t1能级、eg、homo能级、空穴迁移率的测试,检测结果如表3所示:
表3
注:玻璃化温度tg由示差扫描量热法(dsc,德国耐驰公司dsc204f1示差扫描量热仪)测定,升温速率10℃/min;热失重温度td是在氮气气氛中失重1%的温度,在日本岛津公司的tga-50h热重分析仪上进行测定,氮气流量为20ml/min;三线态能级t1是由日立的f4600荧光光谱仪测试,材料的测试条件为2*10-5mol/ml的甲苯溶液;最高占据分子轨道homo能级是由光电子能谱(ips3)测试,测试为大气环境,空穴迁移率测试,将本发明材料制成单电荷器件,用sclc方法测定;eg通过紫外光谱仪进行测试。
由上表数据可知,本发明的有机化合物具有高的玻璃转化温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;具有合适的t1能级,可以阻挡发光层能量损失,从而提升器件发光效率;较宽的带隙(eg),确保本发明化合物在可见光领域没有吸收;合适的homo能级可以解决载流子的注入问题,可降低器件电压。因此,本发明以均苯为核心的化合物在应用于oled器件的不同功能层后,可有效提高器件的发光效率及使用寿命。
以下通过器件实施例1-77和器件比较例1、器件比较例2、器件比较例3详细说明本发明合成的oled材料在器件中的应用效果。本发明器件实施例2-77、器件比较例1、器件比较例2和器件比较例3与器件实施例1相比器件的制作工艺完全相同,并且采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对器件中的空穴传输层或电子阻挡层材料做了更换。各实施例所得器件的结构组成如表4所示,各实施例所得器件的性能测试结果如表5、6、7所示。
器件制备实施例1
透明基板层1/(ito(15nm)/ag(150nm)/ito(15nm))阳极层2/空穴注入层3(ht-1:p1,3%10nm)/空穴传输层4(化合物2,厚度130nm)/电子阻挡层5(eb-1,厚度10nm)/发光层6(bh-1和bd-1按照97:3的重量比混掺,厚度20nm)/空穴阻挡/电子传输层7(et-1和liq,按照1:1的重量比混掺,厚度35nm)/电子注入层8(yb,厚度1nm)/阴极层9(mg和ag,按照1:9的重量比混掺,厚度15nm)/cpl层10(化合物cp-1,厚度70nm)。
具体制备过程如下:
如图1所示,基板层1,对(ito(15nm)/ag(150nm)/ito(15nm))阳极层2进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ito表面的有机残留物。在进行了上述洗涤之后的阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的ht-1:p1,作为空穴注入层3使用,ht-1和p-1的质量比为97:3。接着蒸镀130nm厚度的化合物2作为空穴传输层4。随后蒸镀10nm厚度的化合物eb-1作为电子阻挡层5。上述电子阻挡层5材料蒸镀结束后,制作oled发光器件的发光层6,其结构包括oled发光层6所使用bh-1作为主体材料,bd-1作为掺杂材料,掺杂材料掺杂比例为3%重量比,发光层膜厚为20nm。在上述发光层6之后,继续真空蒸镀电子传输层材料为et-1和liq。该材料的真空蒸镀膜厚为35nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,通过真空蒸镀装置,制作膜厚为1nm的yb层,此层为电子注入层8。在电子注入层8上,通过真空蒸镀装置,制作膜厚为15nm的mg:ag电极层,此层为阴极层9使用。在阴极层9上,真空蒸镀70nm的cp-1,作为cpl层10。
器件制备实施例2-24:按照器件实施例1的过程进行,不同之处在于对空穴注入层3的有机材料和空穴传输层4的材料进行了替换,具体器件结构如表4所示,器件性能测试如表5所示;
器件对比例1,按照器件实施例1的过程进行,不同之处在于对空穴注入层的有机材料和空穴传输层4的材料为ht-1;
器件制备实施例25:按照器件实施例1的过程进行,不同之处在于空穴注入层3中ht-1和p-1的质量比为97:3,空穴传输层4的材料为ht-1,厚度为130nm,电子阻挡层5材料为化合物6,厚度为40nm,主体材料为gh-1、gh-2,客体材料为gd-1,质量比为47:47:6,厚度为40nm,阴极层9厚度为15nm;
器件制备实施例26-36、39-48:按照器件实施例16的过程进行,不同之处在于对电子阻挡层5的材料的材料进行了替换,具体器件结构如表4所示,器件性能测试如表6所示;
器件制备实施例35、36:按照器件实施例25的过程进行,不同之处在于对空穴注入层3的有机材料和空穴传输层4的材料进行了替换;
器件对比例2,按照器件实施例25的过程进行,不同之处在于电子阻挡层5的材料为eb-2;
器件制备实施例49:按照器件实施例1的过程进行,不同之处在于空穴传输层4材料为ht-1,厚度为130nm,电子阻挡层5材料为化合物6,厚度为90nm,主体材料为rh-1,客体材料为rd-1,质量比为97:3,厚度为40nm,阴极层9厚度为15nm;
器件制备实施例59-60、64-77:按照器件实施例49的过程进行,不同之处在于对电子阻挡层5的材料的材料进行了替换,具体器件结构如表4所示,器件性能测试如表7所示;
器件制备实施例61-63:按照器件实施例49的过程进行,不同之处在于对空穴注入层3的有机材料和空穴传输层4的材料进行了替换;
器件对比例3,按照器件实施例49的过程进行,不同之处在于电子阻挡层5的材料为eb-3;
在以上制备过程中所涉及到的材料结构式如下:
表4
所得电致发光器件的检测数据见表5、6、7所示。
表5
表6
表7
注:电压、电流效率和色坐标是使用ivl(电流-电压-亮度)测试系统(苏州弗士达科学仪器有限公司)测试的,测试时的电流密度为10ma/cm2;寿命测试系统为日本系统技研公司eas-62c型oled器件寿命测试仪;lt95指的是在特定亮度(蓝光:1000nits;绿光:10000nits;红光:5000nits)下,器件亮度衰减到95%所用时间。
由表5、6、7的结果可以看出,本发明制备的以均苯为核心的化合物可应用于oled发光器件制作,并且与器件比较例相比,无论是效率、电压还是寿命均比已知oled材料获得较大改观。
综上,以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
1.一种以均苯为核心的有机化合物,其特征在于,该有机化合物的结构如通式(1)所示:
所述ar1-ar6分别独立的表示为取代或未取代的苯基、取代或未取代的菲基、取代或未取代的二甲基芴基、取代或未取代的二苯基芴基、取代或未取代的苯并菲基、代或未取代的吡啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、通式(2)或通式(3)所示结构,且ar1-ar6中至少有三个表示为通式(2)或通式(3)所示结构;
l表示为亚苯基;
c1、c2表示为l通过单键与通式(2)的连接位点;
c3、c4表示为通式(1)通过单键与通式(3)的连接位点;
r1、r2分别独立的表示为氢原子、氘原子、叔丁基、甲基、乙基、丙基、甲氧基、金刚烷基、氰基、氟原子、苯基、联苯基或萘基;
所述可被取代基团的取代基任选自氘原子、氟原子、甲氧基、氰基、甲基、乙基、丙基、金刚烷基、异丙基、叔丁基、戊基、苯基、萘基、二联苯基、萘啶基或吡啶基中的一种或多种。
2.根据权利要求1所述的有机化合物,其特征在于,所述ar1、ar2、ar3、ar4分别表示为通式(2)或通式(3)所示结构。
3.根据权利要求1所述的有机化合物,其特征在于,所述ar1、ar2、ar3、ar5分别表示为通式(2)或通式(3)所示结构。
4.根据权利要求1所述的有机化合物,其特征在于,所述ar1、ar2、ar3、ar4、ar5分别表示为通式(2)或通式(3)所示结构。
5.根据权利要求1所述的有机化合物,其特征在于,所述ar1-ar6均表示为通式(2)或通式(3)所示结构。
6.根据权利要求1所述的有机化合物,其特征在于,所述ar1、ar3、ar5分别表示为通式(2)或通式(3)时,通式(2)中l通过单键连接在c2位点,通式(1)通过单键连接在通式(3)的c4位点。
7.根据权利要求1所述的有机化合物,其特征在于,所述化合物具体结构为:
8.一种有机电致发光器件,包括阴极、阳极和有机功能层,所述有机功能层位于所述阳极和阴极之间,其特征在于,所述有机功能层含有权利要求1-7任一项所述的以均苯为核心的有机化合物。
9.根据权利要求8所述的有机电致发光器件,所述有机功能层包括空穴传输层或电子阻挡层,其特征在于,所述空穴传输层或电子阻挡层含有权利要求1-7任一项所述的以均苯为核心的有机化合物。
10.一种照明或显示元件,其特征在于,包括权利要求8或9任一项所述的有机电致发光器件。
技术总结