本发明涉及一种以茚并蒽衍生物为核心的有机化合物及其应用,属于半导体技术领域。
背景技术:
有机电致发光(oled:organiclightemissiondiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。oled发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成oled发光器件。作为电流器件,当对oled发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷,正负电荷进一步在发光层中复合,即产生oled电致发光。
当前,oled显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,oled器件的发光效率,使用寿命等性能还需要进一步提升。对于oled发光器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现oled器件的性能的不断提升,不但需要从oled器件结构和制作工艺的创新,更需要oled光电功能材料不断研究和创新,创制出更高性能oled的功能材料。
应用于oled器件的oled光电功能材料从用途上可划分为两大类,即电荷注入传输材料和发光材料,进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的oled发光器件,要求各种有机功能材料具备良好的光电特性,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料要求材料具有良好双极性,适当的homo/lumo能阶等。
构成oled器件的oled光电功能材料膜层至少包括两层以上结构,产业上应用的oled器件结构,则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于oled器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的oled器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现,也可能完全迥异。
因此,针对当前oled器件的产业应用要求,以及oled器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的oled功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前oled显示照明产业的实际需求而言,目前oled材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
技术实现要素:
本发明的目的之一,是提供一种于氮杂苯和苯并噻唑的有机化合物。本发明提供的有机化合物不易结晶,具有良好的热稳定性和较高的玻璃化温度,同时具有合适的homo能级,采用本发明提供的有机化合物的器件通过结构优化,可有效提升oled器件的光电性能以及oled器件的寿命。
本发明解决上述技术问题的技术方案如下:一种以茚并蒽衍生物为核心的有机化合物,该有机化合物的结构如通式(1)所示:
通式(1)中,所示虚线表示虚线两端的基团通过单键连接或者不连接;
通式(1)中,所述r1表示为氢原子或通式(2)所示结构;
所述r2、r3分别独立的表示为氢原子、氕、氘、氚、氰基、甲氧基、卤素、c1-20的烷基、c3-20的环烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子取代或未取代的5至30元杂芳基或通式(3)所示结构中的一种,且r2和r3至少有一个表示为通式(3)所示结构;
所述通式(2)通过x1-x2、x2-x3或x3-x4键与通式(1)并环连接;
通式(3)中,所述ar1和ar2分别独立的表示为取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
所述l1至l3分别独立的表示为单键、取代或未取代的c6-30亚芳基、含有一个或多个杂原子的取代或未取代的5~30元亚杂芳基中的一种;
所述可取代基团的取代基任选自氘原子、甲氧基、氰基、卤素原子、c1-20的烷基、c3-20的环烷基、c6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;
所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述通式(1)所示结构表示为通式(1-1)至通式(1-6)所示结构中任一种:
进一步,所述l1至l3分别独立的表示为取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚二联苯基、取代或未取代的亚吡啶基、取代或未取代的亚咔唑基、取代或未取代的亚呋喃基、取代或未取代的亚嘧啶基、取代或未取代的亚吡嗪基、取代或未取代的亚哒嗪基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚9,9-二甲基芴基、取代或未取代的亚n-苯基咔唑基、取代或未取代的亚喹啉基、取代或未取代的亚异喹啉基或者取代或未取代的亚萘啶基中的一种;
所述r2、r3分别独立的表示为氢原子、氕原子、氘原子、氚原子、卤素、氰基、甲基、乙基、丙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的呋喃基、取代或未取代的嘧啶基、取代或未取代的吡嗪基、取代或未取代的哒嗪基、取代或未取代的噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的9,9-二甲基芴基、取代或未取代的n-苯基咔唑基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的萘啶基、取代或未取代的恶唑基、取代或未取代的咪唑基、取代或未取代的苯并恶唑基或者取代或未取代的苯并咪唑基或通式(3)所示结构中的一种,且至少有一个表示为通式(3)所示结构;
所述ar1至ar2分别独立的表示为取代或未取代的苯基、取代或未取代的萘基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的呋喃基、取代或未取代的嘧啶基、取代或未取代的吡嗪基、取代或未取代的哒嗪基、取代或未取代的噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的9,9-二甲基芴基、取代或未取代的n-苯基咔唑基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的萘啶基、取代或未取代的恶唑基、取代或未取代的咪唑基、取代或未取代的苯并恶唑基或者取代或未取代的苯并咪唑基中的一种;
所述可取代基团的取代基任选自氘原子、甲氧基、氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基中的一种或多种。
进一步改进,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构。
进一步改进,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构,所述通式(2)通过x1-x2与通式(1)并环连接。
进一步改进,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构,所述r3表示为氢原子。
进一步,所述有机化合物的具体结构式为以下结构中的任一种:
本发明的目的之二,是提供一种有机电致发光器件。本发明的化合物在oled发光器件中具有良好的应用效果,具有良好的产业化前景。
本发明解决上述技术问题的技术方案如下:一种有机电致发光器件,所述有机电致发光器件包括至少一层功能层含有上述以茚并蒽衍生物为核心的有机化合物。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述功能层包括电子阻挡层或空穴传输层,所述电子阻挡层或空穴传输层含有上述的以茚并蒽衍生物为核心的有机化合物。
本发明的目的之三,是提供一种照明或显示元件。本发明的有机电致发光器件可以应用在显示原件,使器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在oled发光器件中具有良好的应用效果,具有良好的产业化前景。
本发明解决上述技术问题的技术方案如下:一种照明或显示元件,包括上述的有机电致发光器件。
本发明的有益效果是:
(1)本发明的化合物以茚并蒽衍生物为核心,连接给电子基团,具有较高的空穴迁移率,作为oled发光器件的空穴传输层的材料,可提高激子在发光层中的复合效率,提高能量利用率,从而提高器件发光效率。
(2)本发明的化合物使得电子和空穴在发光层的分布更加平衡,在恰当的homo能级下,提升了空穴注入和传输性能;在合适的lumo能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;可有效提高激子利用率,降低器件电压,提高器件的电流效率和寿命。本发明的化合物在oled发光器件中具有良好的应用效果,具有良好的产业化前景。
(3)本发明化合物支链呈放射状,使得分子间的距离变大,使得使得本发明申请化合物具有较高的tg温度,且具有较小的分子间作用力。分子间作用力较小使得本发明申请化合物具有较小的蒸镀温度,既保证了材料在量产时长时间蒸镀材料不分解,又降低了由于蒸镀温度的热辐射对mask的形变影响。
附图说明
图1为本发明所列举的材料应用于oled器件的结构示意图;
其中,1为透明基板层,2为ito阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发光层,7为电子传输或空穴阻挡层,8为电子注入层,9为阴极层。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1:中间体b的合成
t2和t3分别表示为溴原子或氢原子且t2和t3中至少一个表示为溴原子。
(1)250ml三口瓶中,加入0.045mol镁屑,5ml干燥的四氢呋喃,加入3mmol二溴乙烷引发反应后,保持回流下滴加0.04mol原料a的15ml四氢呋喃溶液,加毕接着回流30min,降至室温,倾出清液备用。
(2)另一500ml三口瓶,氮气保护下,加入0.05mol原料b,20ml干燥的甲苯,0.2mmol的1,3-双二苯基膦丙烷氯化镍,控制温度30℃滴加上步制备的清液,加毕于30℃接着搅拌5小时,停止反应,加入氯化铵溶液水解,有机层水洗后硅胶柱层析分离,石油醚∶正己烷体积比=1∶1洗脱,洗脱液浓缩得到中间体a。
(3)500ml三口瓶中,加入0.03mol中间体a,30ml干燥的四氢呋喃,氮气保护下降温至-78℃,缓慢滴加5ml丁基锂的正己烷溶液(2.4mol/l),加毕于-78℃保温反应30min,再缓慢滴入0.04mol原料c,缓慢升至25℃反应2小时,停止,加入氯化铵水溶液水解,有机层硫酸钠干燥后,浓缩至干,再加入20ml二氯甲烷溶解,将此二氯甲烷溶液转移至250ml三口瓶,氮气下于0℃向其中缓慢滴加0.02mol甲烷磺酸,加毕在25℃下反应1小时,加水分液,有机层硅胶柱层析分离,石油醚洗脱,洗脱液浓缩得到产物b。
此类以中间体b1的合成为例:
(1)250ml三口瓶中,加入0.045mol镁屑,5ml干燥的四氢呋喃,加入3mmol二溴乙烷引发反应后,保持回流下滴加0.04mol原料a的15ml四氢呋喃溶液,加毕接着回流30min,降至室温,倾出清液备用。
(2)另一500ml三口瓶,氮气保护下,加入0.05mol原料b-1,20ml干燥的甲苯,0.2mmol的1,3-双二苯基膦丙烷氯化镍,控制温度30℃滴加上步制备的清液,加毕于30℃接着搅拌5小时,停止反应,加入氯化铵溶液水解,有机层水洗后硅胶柱层析分离,石油醚∶正己烷体积比=1∶1洗脱,洗脱液浓缩得到中间体a-1,hplc纯度99.2%,收率75.4%。
元素分析结构(分子式c18h13br):理论值c,69.92;h,4.24;br,25.84;测试值:c,69.97;h,4.23;br,25.89。esi-ms(m/z)(m ):理论值为308.02,实测值为308.04。
(3)500ml三口瓶中,加入0.03mol中间体a-1,30ml干燥的四氢呋喃,氮气保护下降温至-78℃,缓慢滴加5ml丁基锂的正己烷溶液(2.4mol/l),加毕于-78℃保温反应30min,再缓慢滴入0.04mol原料c-1,缓慢升至25℃反应2小时,停止,加入氯化铵水溶液水解,有机层硫酸钠干燥后,浓缩至干,再加入20ml二氯甲烷溶解,将此二氯甲烷溶液转移至250ml三口瓶,氮气下于0℃向其中缓慢滴加0.02mol甲烷磺酸,加毕在25℃下反应1小时,加水分液,有机层硅胶柱层析分离,石油醚洗脱,洗脱液浓缩得到产物中间体b1,hplc纯度99.2%,收率45.9%。
元素分析结构(分子式c31h19br):理论值c,78.99;h,4.06;br,16.95;测试值:c,78.97;h,4.03;br,16.98。esi-ms(m/z)(m ):理论值为470.07,实测值为470.01。
实施例中所需的中间体b的合成参考中间体b1的合成,合成原料如表1:
表1
实施例2:化合物1的合成
在250ml的三口瓶中,通氮气保护下,加入0.01mol中间体b1,0.012mol原料d1,150ml甲苯搅拌混合,然后加入5×10-5molpd2(dba)3,5×10-5molp(t-bu)3,0.03mol叔丁醇钠,加热至105℃,回流反应24小时,取样点板,显示无溴代物剩余,反应完全;自然冷却至室温,过滤,滤液旋蒸至无馏分,过中性硅胶柱,得到目标产物,hplc纯度99.34%,收率72.4%。元素分析结构(分子式c58h41n):理论值:c,92.64;h,5.50;n,1.86;测试值c,92.67;h,5.57;n,1.84。esi-ms(m/z)(m ):理论值为751.32,实测值为751.37。1hnmr(500mhz,chloroform-d)δ8.17–8.07(m,1h),7.84(dd,1h),7.65(d,1h),7.61–7.53(m,1h),7.53–7.26(m,19h),7.26–7.20(m,2h),7.20–7.11(m,4h),6.88(d,1h),6.81(dd,1h),3.44(s,4h),1.56(d,6h).
实施例3:化合物2的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d2代替原料d1;元素分析结构(分子式c64h45n):理论值:c,92.83;h,5.48;n,1.69;测试值c,92.87;h,5.40;n,1.66。esi-ms(m/z)(m ):理论值为827.36,实测值为827.39。
1hnmr(500mhz,chloroform-d)δ8.19–8.07(m,1h),7.84(dd,1h),7.77(d,1h),7.74–7.68(m,1h),7.64(d,1h),7.61–7.51(m,4h),7.51–7.25(m,17h),7.25–7.11(m,7h),6.86(d,1h),6.81(dd,1h),3.44(s,4h),1.57(d,6h).
实施例4:化合物3的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d3代替原料d1;元素分析结构(分子式c64h45n):理论值:c,92.83;h,5.48;n,1.69;测试值c,92.84;h,5.45;n,1.61。esi-ms(m/z)(m ):理论值为827.36,实测值为827.31。
1hnmr(500mhz,chloroform-d)δ8.20–7.99(m,1h),7.90–7.75(m,2h),7.64(d,1h),7.62–7.53(m,4h),7.53–7.35(m,8h),7.35–7.24(m,10h),7.24–7.11(m,7h),6.86(d,1h),6.81(dd,1h),3.44(s,4h),1.56(d,6h).
实施例5:化合物4的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d4代替原料d1;元素分析结构(分子式c61h40n2):理论值:c,91.47;h,5.03;n,3.50;测试值c,91.44;h,5.01;n,3.54。esi-ms(m/z)(m ):理论值为800.32,实测值为800.34。
1hnmr(500mhz,chloroform-d)δ8.20–8.02(m,2h),7.89(d,1h),7.84(dd,1h),7.65(d,1h),7.62–7.54(m,2h),7.54–7.46(m,3h),7.46–7.21(m,20h),7.21–7.11(m,3h),6.96(dd,1h),6.92(d,1h),6.81(dd,1h),3.44(s,4h).
实施例6:化合物45的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d5代替原料d1;用原料b2代替原料b1;元素分析结构(分子式c65h42n2):理论值:c,91.73;h,4.97;n,3.29;测试值c,91.78;h,4.93;n,3.27。esi-ms(m/z)(m ):理论值为850.33,实测值为850.36。
1hnmr(500mhz,chloroform-d)δ8.03(dd,1h),7.89(dt,1h),7.85(ddd,2h),7.81–7.73(m,2h),7.64(d,1h),7.62–7.53(m,3h),7.53–7.24(m,20h),7.24–7.14(m,5h),7.10(dd,1h),6.91–6.81(m,2h),3.44(s,4h).
实施例7:化合物46的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d6代替原料d1;用原料b2代替原料b1;元素分析结构(分子式c65h42n2):理论值:c,91.77;h,4.93;n,3.26;测试值c,91.73;h,4.97;n,3.29。esi-ms(m/z)(m ):理论值为850.33,实测值为850.35。
1hnmr(500mhz,chloroform-d)δ8.15–8.06(m,2h),7.89(dt,1h),7.85(ddd,2h),7.79(dd,1h),7.64(d,1h),7.63–7.59(m,2h),7.59–7.53(m,1h),7.53–7.46(m,3h),7.46–7.40(m,3h),7.40–7.09(m,20h),6.89–6.80(m,2h),3.44(s,4h).
实施例8:化合物47的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d7代替原料d1;用原料b2代替原料b1;元素分析结构(分子式c65h42n2):理论值:c,91.73;h,4.97;n,3.29;测试值c,91.75;h,4.91;n,3.24。esi-ms(m/z)(m ):理论值为850.33,实测值为850.36。
1hnmr(500mhz,chloroform-d)δ8.16–8.05(m,2h),7.89(dt,1h),7.85(ddd,2h),7.79(dd,1h),7.64(d,1h),7.63–7.58(m,2h),7.58–7.54(m,1h),7.50(d,1h),7.42(ddt,3h),7.40–7.10(m,21h),7.05(dt,1h),6.89(d,1h),6.87(dd,1h),3.44(s,4h).
实施例9:化合物48的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d8代替原料d1;用原料b2代替原料b1;元素分析结构(分子式c71h46n2):理论值:c,91.98;h,5.00;n,3.02;测试值c,91.98;h,5.00;n,3.02。esi-ms(m/z)(m ):理论值为926.37,实测值为926.37。
1hnmr(500mhz,chloroform-d)δ8.16–8.05(m,1h),7.89(dt,1h),7.85(ddd,3h),7.79(dd,1h),7.69–7.62(m,3h),7.62–7.52(m,6h),7.50(d,1h),7.47–7.13(m,23h),6.93(dd,1h),6.91–6.82(m,2h),3.44(s,4h).
实施例10:化合物89的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d9代替原料d1;用原料b3代替原料b1;元素分析结构(分子式c71h46n2):理论值:c,91.98;h,5.00;n,3.02;测试值c,91.96;h,5.08;n,3.05。esi-ms(m/z)(m ):理论值为926.37,实测值为926.36。
1hnmr(500mhz,chloroform-d)δ8.10(d,1h),8.07–8.01(m,1h),7.97(q,1h),7.90(ddd,1h),7.88–7.74(m,4h),7.69–7.61(m,3h),7.61–7.13(m,28h),7.10(dd,1h),6.91–6.80(m,2h),3.44(s,4h).
实施例11:化合物90的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d10代替原料d1;用原料b3代替原料b1;元素分析结构(分子式c69h44n2):理论值:c,91.97;h,4.92;n,3.11;测试值c,91.95;h,4.96;n,3.12。esi-ms(m/z)(m ):理论值为900.35,实测值为900.37。
1hnmr(500mhz,chloroform-d)δ8.10(d,1h),8.04(dd,1h),8.00–7.77(m,8h),7.64(d,1h),7.63–7.46(m,8h),7.46–7.12(m,19h),6.91–6.79(m,2h),3.44(s,4h).
实施例12:化合物91的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d11代替原料d1;用原料b3代替原料b1;元素分析结构(分子式c59h37no):理论值:c,91.33;h,4.81;n,1.81;o,2.06;测试值c,91.35;h,4.81;n,1.81;esi-ms(m/z)(m ):理论值为775.29,实测值为775.31。
1hnmr(500mhz,chloroform-d)δ8.14–8.07(m,1h),7.99(dd,1h),7.96–7.93(m,1h),7.90(dt,1h),7.88–7.77(m,4h),7.65(d,1h),7.58–7.12(m,20h),7.06(d,1h),6.96(d,1h),6.87(ddd,2h),3.44(s,4h).
实施例13:化合物92的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d12代替原料d1;用原料b3代替原料b1;元素分析结构(分子式c59h37no):理论值:c,91.33;h,4.81;n,1.81;o,2.06;测试值c,91.33;h,4.88;n,1.81;esi-ms(m/z)(m ):理论值为775.29,实测值为775.30。
1hnmr(500mhz,chloroform-d)δ8.14–8.06(m,1h),8.02(dd,1h),7.98–7.93(m,1h),7.90(dt,1h),7.87–7.76(m,3h),7.65(d,1h),7.61–7.40(m,7h),7.40–7.08(m,16h),6.93–6.78(m,2h),3.44(s,4h).
实施例14:化合物133的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d13代替原料d1;用原料b4代替原料b1;元素分析结构(分子式c59h37no):理论值:c,91.33;h,4.81;n,1.81;o,2.06;测试值c,91.34;h,4.85;n,1.85。esi-ms(m/z)(m ):理论值为775.29,实测值为775.22。
1hnmr(500mhz,chloroform-d)δ8.33(dd,1h),8.02(dd,1h),7.97–7.90(m,1h),7.90–7.80(m,2h),7.80–7.75(m,1h),7.72(dd,1h),7.66(d,1h),7.58(dd,1h),7.52(td,1h),7.48–7.41(m,3h),7.41–7.12(m,18h),6.91(dd,2h),3.44(s,4h).
实施例15:化合物134的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d14代替原料d1;用原料b4代替原料b1;元素分析结构(分子式c65h41no):理论值:c,91.63;h,4.85;n,1.64;o,1.88;测试值c,91.64;h,4.81;n,1.65。esi-ms(m/z)(m ):理论值为851.32,实测值为851.37。
1hnmr(500mhz,chloroform-d)δ8.39–8.27(m,1h),8.00(dd,1h),7.89(dt,1h),7.84(dt,2h),7.80–7.72(m,1h),7.64(d,1h),7.61–7.25(m,21h),7.25–7.13(m,7h),6.91(dd,2h),3.44(s,4h).
实施例16:化合物135的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d15代替原料d1;用原料b4代替原料b1;元素分析结构(分子式c65h41no):理论值:c,91.63;h,4.85;n,1.64;o,1.88;测试值c,91.64;h,4.86;n,1.62。esi-ms(m/z)(m ):理论值为851.32,实测值为851.38。
1hnmr(500mhz,chloroform-d)δ8.41–8.25(m,1h),8.02(ddd,2h),7.89(dt,1h),7.83(ddd,2h),7.79–7.73(m,1h),7.64(d,1h),7.61–7.26(m,20h),7.26–7.11(m,7h),6.91(dd,2h),3.44(s,4h).
实施例17:化合物136的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d16代替原料d1;用原料b4代替原料b1;元素分析结构(分子式c63h41n):理论值:c,93.19;h,5.09;n,1.72;测试值c,93.13;h,5.04;n,1.75。esi-ms(m/z)(m ):理论值为811.32,实测值为811.35。
1hnmr(500mhz,chloroform-d)δ8.33(dd,1h),8.04–7.92(m,2h),7.92–7.80(m,3h),7.80–7.72(m,1h),7.72–7.62(m,2h),7.62–7.47(m,7h),7.47–7.21(m,14h),7.21(s,5h),7.02–6.81(m,2h),3.44(s,4h).
实施例18:化合物265的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d17代替原料d1;用原料b5代替原料b1;元素分析结构(分子式c55h37n3s):理论值:c,85.57;h,4.83;n,5.44;s,4.15;测试值c,85.56h,4.88;n,5.44;s,4.19。esi-ms(m/z)(m ):理论值为771.27,实测值为771.25。
1hnmr(500mhz,chloroform-d)δ8.62(d,1h),8.12(dd,1h),7.91(ddd,2h),7.88–7.81(m,1h),7.53–7.39(m,6h),7.39–7.10(m,18h),7.08(dt,1h),7.03(t,1h),6.94(dt,1h),6.88(dd,1h),3.44(s,4h).
实施例19:化合物371的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d18代替原料d1;用原料b6代替原料b1;元素分析结构(分子式c57h39n):理论值:c,92.77;h,5.33;n,1.90;测试值c,92.78;h,5.32;n,1.90。esi-ms(m/z)(m ):理论值为737.31,实测值为737.36。
1hnmr(500mhz,chloroform-d)δ7.89(dt,1h),7.86(dd,1h),7.80(dq,3h),7.76–7.69(m,1h),7.63–7.52(m,1h),7.52–7.23(m,18h),7.23–7.10(m,7h),7.05(dt,1h),7.00–6.91(m,2h),3.44(s,4h).
实施例20:化合物372的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d19代替原料d1;用原料b7代替原料b1;元素分析结构(分子式c68h49n):理论值:c,92.80;h,5.61;n,1.59;测试值c,92.83;h,5.60;n,1.57。esi-ms(m/z)(m ):理论值为879.39,实测值为879.33。
1hnmr(500mhz,chloroform-d)δ8.10(d,1h),7.96(d,1h),7.90(ddd,1h),7.88–7.83(m,1h),7.81(ddd,1h),7.64–7.36(m,13h),7.36–7.15(m,16h),7.15–7.09(m,2h),7.04(dt,1h),6.97(t,1h),6.92(dt,1h),3.44(s,4h),1.56(d,6h).
实施例21:化合物373的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d20代替原料d1;用原料b8代替原料b1;元素分析结构(分子式c67h45n3):理论值:c,90.21;h,5.08;n,4.71;测试值c,90.20;h,5.08;n,4.72。esi-ms(m/z)(m ):理论值为891.36,实测值为891.38。
1hnmr(500mhz,chloroform-d)δ8.43–8.25(m,4h),7.90(dt,1h),7.82–7.74(m,1h),7.67–7.57(m,4h),7.57–7.48(m,2h),7.48–7.08(m,28h),6.98(dt,1h),3.44(s,4h).
实施例22:化合物363的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d3代替原料d1;用原料b9代替原料b1;元素分析结构(分子式c65h44n2):理论值:c,91.52;h,5.20;n,3.28;测试值c,91.56;h,5.26;n,3.24。esi-ms(m/z)(m ):理论值为852.35,实测值为852.07。
1hnmr(500mhz,chloroform-d)δ8.18–8.07(m,1h),7.92–7.82(m,2h),7.77(d,1h),7.63(dd,1h),7.61–7.53(m,4h),7.53–7.22(m,18h),7.22–7.11(m,6h),6.57(dd,1h),3.44(s,4h),1.56(d,6h).
实施例23:化合物364的合成
按实施例2中化合物1的合成方法制备,不同点在于用原料d4代替原料d1;用原料b10代替原料b1;元素分析结构(分子式c61h39cln2):理论值:c,87.70;h,4.71;cl,4.24;n,3.35;测试值c,87.76;h,4.72;cl,4.26;n,3.32。esi-ms(m/z)(m ):理论值为834.28,实测值为834.26。
1hnmr(500mhz,chloroform-d)δ8.17–8.04(m,2h),7.86(d,1h),7.68–7.61(m,2h),7.61–7.53(m,2h),7.53–7.37(m,9h),7.37–7.23(m,13h),7.23–7.15(m,4h),7.14(d,1h),6.95(dd,1h),3.44(s,4h).
本发明化合物在发光器件中使用,可以作为空穴传输层材料使用,也可以作为电子阻挡层材料使用。对本发明上述实施例制备的化合物分别进行热性能、t1能级和homo能级的测试,检测结果如表1所示:
表2
注:三线态能级t1是由horiba的fluorolog-3系列荧光光谱仪测试,材料的测试条件为2*10-5mol/l的甲苯溶液;玻璃化转变温度tg由示差扫描量热法(dsc,德国耐驰公司dsc204f1示差扫描量热仪)测定,升温速率10℃/min;热失重温度td是在氮气气氛中失重1%的温度,在日本岛津公司的tga-50h热重分析仪上进行测定,氮气流量为20ml/min;最高占据分子轨道homo能级是由电离能量测试系统(ips-3)测试,测试为大气环境。
由上表数据可知,本发明的有机化合物具有较为合适的homo能级,可应用于空穴传输层或电子阻挡层,本发明的有机化合物具有较高的热稳定性,使得所制作的含有本发明有机化合物的oled器件效率和寿命均得到提升。
以下通过器件实施例1-30和比较例1详细说明本发明合成的oled材料在器件中的应用效果。本发明器件实施例2-30和器件比较例1与实施例1相比器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是对器件中的空穴注入层、空穴传输层材料或电子阻挡层材料做了更换。各实施例所得器件的性能测试结果如表4所示。
器件实施例1
具体制备过程如下:
如图1所示,透明基板层1,对ito阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ito表面的有机残留物。在进行了上述洗涤之后的ito阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的化合物1和p-1作为空穴注入层3,ht-1和p-1的质量比为98:2。接着蒸镀55nm厚度的化合物1作为空穴传输层4。随后蒸镀10nm厚度的eb-1作为电子阻挡层5。上述电子阻挡材料蒸镀结束后,制作oled发光器件的发光层6,其结构包括oled发光层6所使用bh作为主体材料,bd作为掺杂材料,掺杂材料掺杂比例为3%重量比,发光层膜厚为20nm。在上述发光层6之后,继续真空蒸镀et-1和liq,et-1和liq质量比为1:1,膜厚为35nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,通过真空蒸镀装置,制作膜厚为1nm的yb层,此层为电子注入层8。在电子注入层8上,通过真空蒸镀装置,制作膜厚为80nm的mg:ag电极层,mg、ag质量比为1:9,此层为阴极层9。
相关材料的分子结构式如下所示:
表3
所得电致发光器件的检测数据见表4所示。
表4
注:电压、电流效率和色坐标是使用ivl(电流-电压-亮度)测试系统(苏州弗士达科学仪器有限公司)测试的,测试时的电流密度为10ma/cm2;寿命测试系统为日本系统技研公司eas-62c型oled器件寿命测试仪;lt95指的是在特定亮度(蓝光:1000nits)下,器件亮度衰减到95%所用时间。
由表4的结果可以看出本发明有机化合物可应用于oled发光器件制作,并且与比较例相比,无论是效率还是寿命均比已知oled材料获得较大改观,特别是器件的使用寿命获得较大的提升。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
1.一种以茚并蒽衍生物为核心的有机化合物,其特征在于,该有机化合物的结构如通式(1)所示:
通式(1)中,所示虚线表示虚线两端的基团通过单键连接或者不连接;
通式(1)中,所述r1表示为氢原子或通式(2)所示结构;
所述r2、r3分别独立的表示为氢原子、氕、氘、氚、氰基、甲氧基、卤素、c1-20的烷基、c3-20的环烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子取代或未取代的5至30元杂芳基或通式(3)所示结构中的一种,且r2和r3至少有一个表示为通式(3)所示结构;
所述通式(2)通过x1-x2、x2-x3或x3-x4键与通式(1)并环连接;
通式(3)中,所述ar1和ar2分别独立的表示为取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;
所述l1至l3分别独立的表示为单键、取代或未取代的c6-30亚芳基、含有一个或多个杂原子的取代或未取代的5~30元亚杂芳基中的一种;
所述可取代基团的取代基任选自氘原子、甲氧基、氰基、卤素原子、c1-20的烷基、c3-20的环烷基、c6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;
所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。
2.根据权利要求1所述的以茚并蒽衍生物为核心的有机化合物,其特征在于,所述通式(1)所示结构表示为通式(1-1)至通式(1-8)所示结构中任一种:
3.根据权利要求1所述的以茚并蒽衍生物为核心的有机化合物,其特征在于,所述l1至l3分别独立的表示为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚二联苯基、取代或未取代的亚吡啶基、取代或未取代的亚咔唑基、取代或未取代的亚呋喃基、取代或未取代的亚嘧啶基、取代或未取代的亚吡嗪基、取代或未取代的亚哒嗪基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚9,9-二甲基芴基、取代或未取代的亚n-苯基咔唑基、取代或未取代的亚喹啉基、取代或未取代的亚异喹啉基或者取代或未取代的亚萘啶基中的一种;
所述r2、r3分别独立的表示为氢原子、氕原子、氘原子、氚原子、卤素、氰基、甲基、乙基、丙基、异丙基、叔丁基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的呋喃基、取代或未取代的嘧啶基、取代或未取代的吡嗪基、取代或未取代的哒嗪基、取代或未取代的噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的9,9-二甲基芴基、取代或未取代的n-苯基咔唑基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的萘啶基、取代或未取代的恶唑基、取代或未取代的咪唑基、取代或未取代的苯并恶唑基或者取代或未取代的苯并咪唑基或通式(3)所示结构中的一种,且至少有一个表示为通式(3)所示结构;
所述ar1和ar2分别独立的表示为取代或未取代的苯基、取代或未取代的萘基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的呋喃基、取代或未取代的嘧啶基、取代或未取代的吡嗪基、取代或未取代的哒嗪基、取代或未取代的噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的9,9-二甲基芴基、取代或未取代的n-苯基咔唑基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的萘啶基、取代或未取代的恶唑基、取代或未取代的咪唑基、取代或未取代的苯并恶唑基或者取代或未取代的苯并咪唑基中的一种;
所述可取代基团的取代基任选自氘原子、甲氧基、氟原子、氰基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基、吡啶基、苯并呋喃基、咔唑基、苯并噻吩基或呋喃基中的一种或多种。
4.根据权利要求1所述的有机化合物,其特征在于,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构。
5.根据权利要求1所述的有机化合物,其特征在于,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构,所述通式(2)通过x1-x2与通式(1)并环连接。
6.根据权利要求1所述的有机化合物,其特征在于,所述r2表示为氢原子或叔丁基,所述r3表示为通式(3)所示结构,所述r1表示为氢原子。
7.根据权利要求1所述的有机化合物,其特征在于,所述有机化合物的具体结构式为以下结构中的任一种:
8.一种有机电致发光器件,其特征在于,所述有机电致发光器件包括至少一层功能层含有权利要求1-7任一项所述的以茚并蒽衍生物为核心的有机化合物。
9.根据权利要求8所述的一种有机电致发光器件,其特征在于,所述功能层包括电子阻挡层或空穴传输层,其特征在于,所述电子阻挡层或空穴传输层含有权利要求1-7任一项所述的以茚并蒽衍生物为核心的有机化合物。
10.一种照明或显示元件,其特征在于,所述照明或显示元件含有权利要求8或9任一项所述的有机发光器件。
技术总结