一种以咔唑衍生物为核心的有机化合物及其应用的制作方法

    专利2022-07-08  117


    本发明涉及半导体技术领域,尤其涉及一种以咔唑衍生物为核心的有机化合物及其应用。



    背景技术:

    有机电致发光(oled:organiclightemissiondiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。oled发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成oled发光器件。oled发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在电子阻挡层中复合,即产生oled电致发光。

    应用于oled器件的oled光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。

    为了制作高性能的oled发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为电子阻挡层的主体材料具有良好双极性,适当的homo/lumo能阶等。



    技术实现要素:

    针对现有技术存在的上述问题,本发明申请人提供了一种以咔唑衍生物为核心的有机化合物及其应用。本发明化合物具有较高的玻璃化转变温度和分子热稳定性,合适的homo能级,通过器件结构优化,可有效提升oled器件的光电性能以及oled器件的寿命。

    本发明解决上述技术问题的的技术方案如下:一种以咔唑衍生物为核心的有机化合物,所述有机化合物的结构如通式(1)所示:

    通式(1)中,所述r表示为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基;

    所述r1、r2分别独立的表示为氢原子、氘原子、甲氧基、c1-10烷基、c3-20的环烷基、取代或未取代的c6-30芳基、取代或未取代的含有一个或多个杂原子的5至30元杂芳基;

    所述ar1表示为取代或未取代的c6-30芳基、取代或未取代的含有一个或多个杂原子的5至30元杂芳基;

    所述ar2表示为通式(2)或通式(3)所示结构;

    通式(2)和通式(3)中,x表示为-o-、-s-、-c(r4)(r5)或-n(r6)-中的一种;

    r3表示为通式(4)、通式(5)或通式(6)所示结构:

    通式(4)中x1、通式(5)中x2和x3,分别表示为-o-、-s-、-c(r7)(r8)-或-n(r9)-中的一种;

    r4-r9分别独立的表示为c1-c10烷基、取代或未取代的c6-c30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;

    通式(4)、通式(5)、通式(6)通过cl1-cl2键、cl2-cl3键或cl3-cl4键和通式(2)或通式(3)并环连接;

    所述可取代基团的取代基任选自氘原子、甲氧基、氰基、卤素原子、c1-20的烷基、c3-20的环烷基、c6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;

    所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。

    在上述技术方案的基础上,本发明还可以做如下改进。

    进一步,所述r表示为单键、亚苯基、亚萘基、亚二连苯基、亚三联苯基、亚萘啶基或亚吡啶基中的一种;

    进一步,所述r1、r2分别独立的表示为氢原子、氘原子、甲氧基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、二联苯基、三联苯基、萘基、萘啶基、吡啶基、咔唑基或二苯并呋喃基中的一种;

    进一步,所述ar1表示为苯基、二联苯基、三联苯基、萘基、萘啶基、吡啶基、咔唑基或二苯并呋喃基中的一种;

    进一步,所述r4-r9分别独立的表示为甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基或吡啶基中的一种。

    所述可被取代基团的取代基任选自氘原子、氰基、甲氧基、氟原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、萘啶基、二联苯基、三联苯基、呋喃基、二苯并呋喃基、咔唑基或吡啶基中的一种或几种。

    进一步,所述ar2表示为通式(2)所示结构。

    进一步,所述ar2表示为通式(3)所示结构。

    进一步,所述ar2表示为通式(2)所示结构,r3表示为通式(4)所示结构。

    进一步,所述ar2表示为通式(2)所示结构,r3表示为通式(6)所示结构。

    进一步,所述以咔唑衍生物为核心的有机化合物的具体结构为:

    中的任一种。

    本发明的目的之二,是提供上述的以咔唑衍生物为核心的有机化合物在制备有机电致发光器件中的应用。本发明的化合物可以应用于制备有机电致发光器件,具有良好的产业化前景。

    本发明解决上述技术问题的技术方案如下:一种上述的以咔唑衍生物为核心的有机化合物在制备有机电致发光器件中的应用。

    本发明的目的之三,是提供一种有机电致发光器件。本发明的化合物在oled发光器件中具有良好的应用效果,具有良好的产业化前景。

    本发明解决上述技术问题的技术方案如下:一种有机电致发光器件,所述有机电致发光器件包括至少一层功能层含有上述的以咔唑衍生物为核心的有机化合物。

    在上述技术方案的基础上,本发明还可以做如下改进。

    进一步,所述功能层包括电子阻挡层,其特征在于,所述电子阻挡层含有上述的以咔唑衍生物为核心的有机化合物。

    本发明的目的之四,是提供一种照明或显示元件。本发明的有机电致发光器件可以应用在显示原件,使器件的电流效率,驱动电压均得到很大改善;同时,对于器件寿命提升非常明显,在oled发光器件中具有良好的应用效果,具有良好的产业化前景。

    本发明解决上述技术问题的技术方案如下:一种照明或显示元件,包括上述的有机电致发光器件。

    本发明有益的技术效果在于:

    1.本发明的化合物以咔唑衍生物为核心,连接五元并环结构支链,具有较宽的带隙,能够有效阻挡发光层电子向空穴传输侧传递,使得电子和空穴在发光层的分布更加平衡,提高激子在发光层中的复合效率,从而提高器件发光效率。

    2.本发明申请化合物以咔唑为核心连接均苯结构,以五元并环结构为支链,使得本发明申化合物具有较高的三线态能级,能够有效阻挡发光层能量的传递,提高能量利用率,提高器件的发光效率;本发明化合物还具有适宜的homo能级,能够减小空穴的注入势垒,增强空穴的注入特性,从而有效改善器件的电压。

    3.已公开专利us20180138423中的化合物虽然与本发明化合物具有很高的相似度,不同点在于本发明化合物的均苯结构,使得分子间距离变大,分子间相互作用力减弱,分子间作用力越小,越容易克服分子间作用力蒸至基板上,因此可以降低蒸镀温度,所以相比于已公开结构本发明化合物具有低的蒸镀温度,从而使得材料的工业加工窗口变宽。

    4.本发明申请化合物由于均苯结构的引入,使得本发明申请化合物呈放射状结构分布,且各个支链结构具有较大的位阻,使得支链结构不易转动,增强了分子的刚性使得本发明申请化合物具有较高的tg。

    附图说明

    图1为本发明所列举的材料应用于oled器件的结构示意图;

    其中,1为透明基板层,2为ito阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发光层,7为电子传输或空穴阻挡层,8为电子注入层,9为阴极层,10为cpl层。

    具体实施方式

    下面结合附图和实施例,对本发明进行具体描述。

    实施例1:中间体a-1的合成

    具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol原料c-1、0.012mol原料d-1、0.03mol叔丁醇钾、1×10-4molpd2(dba)3、1×10-4mol三苯基膦和150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.7%,收率85.9%;元素分析结构(分子式c29h19cln2):理论值c,80.83;h,4.44;cl8.23;n,6.50;测试值:c,80.85;h,4.46;cl8.21;n,6.49。esi-ms(m/z)(m ):理论值为430.12,实测值为430.18。

    由原料c-1和原料d-1合成中间体a-1,其他中间体a的制备方法与中间体a-1的制备方法类似,本发明用到的中间体a的具体结构如表1所示。

    表1

    实施例2:中间体b的合成

    (1)称取11.85mol中间体e-1和7.46mol原料f-19,用体积比为3:1:1的甲苯、水和乙醇的混合溶液溶解;再加入0.022molpd(oac)2、7.67mmolcs2co3和15.34mmolxphos;在氮气保护、120℃条件下,微波反应3小时。反应结束后,用二氯甲烷萃取得到有机层,再用无水mgso4干燥,进一步通过柱层析方法分离纯化得到中间体g-1,hplc纯度99.8%,收率66%。

    (2)在250ml三口瓶中,通入氮气,将10.0mol中间体g-1、12.0mol原料h-1、0.3gpd(dppf)cl2和30.0mmol醋酸钾加入100ml的1,4-二恶烷中,在130℃下,反应5小时。通过硅胶柱层析分离纯化得到目标产物,hplc纯度99.8%,收率60.5%。元素分析结构(分子式c39h36bno2):理论值c,83.42;h,6.46;b,1.93;n,2.49;o,5.70;测试值:c,83.45;h,6.47;b,1.94;n,2.47。esi-ms(m/z)(m ):理论值为561.28,实测值为561.22。

    中间体b-19的合成分为两步:由中间体e-1和原料f-19合成中间体g-1;中间体g-1和原料h-1合成中间体b-19。其他中间体b的制备方法与中间体b-19的制备方法类似,本发明用到的中间体b的具体结构如表2所示。

    表2

    实施例3:中间体e-1的合成

    在250ml三口瓶中,通入氮气,将10.0mol原料i-1,12.0mol原料h-1,0.3gpd(dppf)cl2,30.0mmol醋酸钾加入100ml的1,4-二恶烷中,在130℃下,反应5小时。通过硅胶柱层析分离纯化得到目标产物,hplc纯度99.8%,收率60.5%。元素分析结构(分子式c33h32bno2):理论值c,81.65;h,6.64;b,2.23;n,2.89;o,6.59;测试值:c,81.67;h,6.65;b,2.25;n,2.85。esi-ms(m/z)(m ):理论值为485.25,实测值为485.19。

    其余中间体e的合成参考中间体e-1的合成方法。

    制备实施例1化合物1的合成

    具体制备方法如下:称取11.11mol中间体a-1和7.40mol中间体b-1,用体积比为3:1:1的甲苯、水和乙醇的混合溶液溶解;再加入0.012molpd(oac)2、7.21mmolcs2co3和14.42mmolxphos;在氮气保护、120℃条件下,微波反应3小时。反应结束后,用二氯甲烷萃取得到有机层,再用无水mgso4干燥,进一步通过柱层析方法分离纯化得到目标产物,hplc纯度99.8%,收率66%。元素分析结构(分子式c47h28n2o2):理论值c,86.48;h,4.32;n,4.29;o,4.90;测试值:c,86.49;h,4.34;n,4.31。esi-ms(m/z)(m ):理论值为652.22,实测值为652.25。

    制备实施例2化合物2的合成

    制备实施例3化合物3的合成

    制备实施例4化合物4的合成

    制备实施例5化合物14的合成

    制备实施例6化合物35的合成

    制备实施例7化合物41的合成

    制备实施例8化合物47的合成

    制备实施例9化合物105的合成

    制备实施例10化合物121的合成

    制备实施例11化合物123的合成

    制备实施例12化合物127的合成

    制备实施例13化合物139的合成

    制备实施例14化合物177的合成

    制备实施例15化合物197的合成

    制备实施例16化合物212的合成

    制备实施例17化合物228的合成

    制备实施例18化合物235的合成

    制备实施例19化合物257的合成

    制备实施例20化合物259的合成

    制备实施例21化合物261的合成

    制备实施例22化合物262的合成

    制备实施例23化合物263的合成

    制备实施例24化合物264的合成

    制备实施例25化合物265的合成

    表4

    本发明化合物在发光器件中使用,可以作为电子阻挡层材料使用。对本发明上述实施例制备的化合物分别进行t1能级、热性能和homo能级的测试,检测结果如表3所示。

    表3

    注:三线态能级t1是由horiba的fluorolog-3系列荧光光谱仪测试,材料的测试条件为2*10-5mol/l的甲苯溶液;玻璃化转变温度tg由示差扫描量热法(dsc,德国耐驰公司dsc204f1示差扫描量热仪)测定,升温速率10℃/min;热失重温度td是在氮气气氛中失重1%的温度,在日本岛津公司的tga-50h热重分析仪上进行测定,氮气流量为20ml/min;最高占据分子轨道homo能级是由电离能量测试系统(ips-3)测试,测试为大气环境。

    由上表数据可知,本发明化合物具有适当的homo能级,适合作为电子阻挡层材料;同时,本发明化合物具有较高的热稳定性,使得应用本发明化合物的oled器件寿命得到提升。

    oled的使用寿命由材料化学键能的稳定性决定,化学键能越高,材料受热蒸镀时,以及oled通电工作时,可以保证材料不断键分解;化学键的强度可以用键解离能(bde)来衡量,键解离能越小,说明键越弱,化合物也就越不稳定。利用gaussian16软件,采用b3lyp/6-31g(d)方法计算得到两个分子之间的排布方式以及相互作用能,分子间的相互作用能数值越小,说明分子所释放出的能量越多,分子间相互作用力越大,分子间就越稳定,越不容易分离。本发明化合物265与专利us20180138423公开的化合物a-115的对比结果如表4和表5所示:

    表4

    由表4数据可以看出对比化合物a-115分子间相互作用力较大,将对比化合物用于电致发光器件时,会对器件的显示效果造成不利的影响,这是因为对比化合物作为oled器件使用时,使用的成膜方式是蒸镀的方式,分子间的相互作用力过大的有机化合物在加热蒸镀时,为克服分子间作用力,蒸镀温度会明显提高,蒸镀温度过高会导致有机分子的分解从而产生杂质,降低器件使用寿命;而本发明申请中化合物分子间相互作用力相对较小,容易克服分子间作用力而蒸发至基板上,因此可以降低蒸镀温度,从而解决了对比化合物分子因蒸镀温度过高而导致有机分子分解问题,因此,本发明申请化合物应用于器件后因有机物高纯度而具有较好的显示及长寿命效果,本发明申请的化合物在应用于器件时,具有更好的使用性能。

    表5

    由表5数据可以看出对比化合物a-115的tg较低,相比本专利发明的化合物膜结晶稳定性差,一定程度上会降低器件的寿命;此外化合物a-115的homo能级较深、增大了空穴注入势垒,有增大器件电压的风险;对比化合物a-115的空穴迁移率较低,存在降低器件电流效率的风险。

    以下通过器件实施例1-27和比较例1详细说明本发明合成的化合物在器件中作为电子阻挡层的应用效果。器件实施例2-27、器件比较例1与器件实施例1相比,所述器件的制作工艺完全相同,并所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中电子阻挡层的材料发生了改变,各实施例所得器件的性能测试结果如表7所示。

    器件实施例1

    具体制备过程如下:

    如图1所示,透明基板层1,对阳极层2(ito(15nm)/ag(150nm)/ito(15nm))进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除阳极层表面的有机残留物。在进行了上述洗涤之后的阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的ht-1和p-1作为空穴注入层3,ht-1和p-1的质量比为97:3。接着蒸镀130nm厚度的ht-1作为空穴传输层4。随后蒸镀10nm厚度的化合物1作为电子阻挡层5。上述电子阻挡材料蒸镀结束后,制作oled发光器件的发光层6,其结构包括oled发光层6所使用bh-1作为主体材料,bd-1作为掺杂材料,掺杂材料掺杂比例为3%重量比,发光层膜厚为20nm。在上述发光层6之后,继续蒸镀et-1和liq,et-1和liq质量比为1:1。该材料的真空蒸镀膜厚为35nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,通过真空蒸镀装置,制作膜厚为1nm的yb层,此层为电子注入层8。在电子注入层8上,通过真空蒸镀装置,制作膜厚为15nm的mg:ag电极层,mg和ag质量比为1:9,此层为阴极层9使用。在阴极层9上,真空蒸镀70nm的cp-1,作为cpl层10。

    如上所述地完成oled发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率,发光光谱以及器件的寿命。用同样的方法制备的器件实施例和比较例如表6所示;所得器件的电流效率、颜色和1000nits亮度下的lt95寿命的测试结果如表7所示。

    表6

    表7

    注:电压、电流效率和色坐标是使用ivl(电流-电压-亮度)测试系统(苏州弗士达科学仪器有限公司)测试的,测试时的电流密度为10ma/cm2;寿命测试系统为日本系统技研公司eas-62c型oled器件寿命测试仪;lt95指的是在特定亮度(蓝光:1000nits)下,器件亮度衰减到95%所用时间。

    由器件数据结果可以看出,与器件比较例1相比,本发明的有机发光器件无论是在效率、驱动电压、还是寿命均相对于已知材料的oled器件获得较大的提升。

    综上,以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。


    技术特征:

    1.一种以咔唑衍生物为核心的有机化合物,其特征在于,所述有机化合物的结构如通式(1)所示:

    通式(1)中,所述r表示为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基;

    所述r1、r2分别独立的表示为氢原子、氘原子、甲氧基、c1-10烷基、c3-20的环烷基、取代或未取代的c6-30芳基、取代或未取代的含有一个或多个杂原子的5至30元杂芳基;

    所述ar1表示为取代或未取代的c6-30芳基、取代或未取代的含有一个或多个杂原子的5至30元杂芳基;

    所述ar2表示为通式(2)或通式(3)所示结构;

    通式(2)和通式(3)中,x表示为-o-、-s-、-c(r4)(r5)或-n(r6)-中的一种;

    r3表示为通式(4)、通式(5)或通式(6)所示结构:

    通式(4)中x1、通式(5)中x2和x3,分别表示为-o-、-s-、-c(r7)(r8)-或-n(r9)-中的一种;

    r4-r9分别独立的表示为c1-c10烷基、取代或未取代的c6-c30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;

    通式(4)、通式(5)、通式(6)通过cl1-cl2键、cl2-cl3键或cl3-cl4键和通式(2)或通式(3)并环连接;

    所述可取代基团的取代基任选自氘原子、甲氧基、氰基、卤素原子、c1-20的烷基、c3-20的环烷基、c6-30芳基、含有一个或多个杂原子5至30元杂芳基中的一种或多种;

    所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。

    2.根据权利要求1所述的有机化合物,其特征在于,所述r表示为单键、亚苯基、亚萘基、亚二连苯基、亚三联苯基、亚萘啶基或亚吡啶基中的一种;

    所述r1、r2分别独立的表示为氢原子、氘原子、甲氧基、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、二联苯基、三联苯基、萘基、萘啶基、吡啶基、咔唑基或二苯并呋喃基中的一种;

    所述ar1表示为苯基、二联苯基、三联苯基、萘基、萘啶基、吡啶基、咔唑基或二苯并呋喃基中的一种;

    所述r4-r9分别独立的表示为甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、联苯基或吡啶基中的一种。

    所述可被取代基团的取代基任选自氘原子、氰基、甲氧基、氟原子、甲基、乙基、丙基、异丙基、叔丁基、戊基、苯基、萘基、萘啶基、二联苯基、三联苯基、呋喃基、二苯并呋喃基、咔唑基或吡啶基中的一种或几种。

    3.根据权利要求1所述的有机化合物,其特征在于,所述ar2表示为通式(2)所示结构。

    4.根据权利要求1所述的有机化合物,其特征在于,所述ar2表示为通式(3)所示结构。

    5.根据权利要求1所述的有机化合物,其特征在于,所述ar2表示为通式(2)所示结构,r3表示为通式(4)所示结构。

    6.根据权利要求1所述的有机化合物,其特征在于,所述ar2表示为通式(2)所示结构,r3表示为通式(6)所示结构。

    7.根据权利要求1所述的以咔唑衍生物为核心的有机化合物,其特征在于,所述以咔唑衍生物为核心的有机化合物的具体结构为:

    中的任一种。

    8.一种有机电致发光器件,其特征在于,所述有机电致发光器件至少一层功能层含有权利要求1-7任一项所述的以咔唑衍生物为核心的有机化合物。

    9.根据权利要求8所述的有机电致发光器件,包括电子阻挡层,其特征在于,所述电子阻挡层含有权利要求1-7任一项所述的以咔唑衍生物为核心的有机化合物。

    10.一种照明或显示元件,其特征在于,包括权利要求8或9任一项所述的有机电致发光器件。

    技术总结
    本发明涉及一种以咔唑衍生物为核心的有机化合物及其应用,属于半导体技术领域。本发明提供化合物的结构如通式(1)所示,本发明还公开了上述化合物的应用。本发明提供的化合物具有较强的空穴传输能力,在恰当的HOMO能级下,提升了空穴注入和传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,搭配本发明范围内的支链可有效提高激子利用率和辐射效率。

    技术研发人员:梁丽;李崇;吴秀芹;王芳;张兆超
    受保护的技术使用者:江苏三月光电科技有限公司
    技术研发日:2019.09.11
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-21064.html

    最新回复(0)