一种太阳能地源热泵供热与空调系统设计方法与流程

    专利2022-07-08  108


    本发明属于供热系统设计技术领域,具体涉及一种太阳能地源热泵供热与空调系统设计方法。



    背景技术:

    在我国北方地区,建筑物冬季热负荷较大,因此系统设计主要以热负荷为主。若完全采用地源热泵来供暖的话,则地热换热器和机组的初投资均比较高,连续运行的效率也较低。而在夏季运行时,机组的容量就过大,造成浪费。而且由于这些地区冬季从大地取热多于夏季大地的蓄热,长期运行将造成大地温度降低,热泵系统的cop值也比较低,系统将无法满足设计要求,热泵的节能效果就体现不出来。



    技术实现要素:

    针对现有技术中存在的上述问题,本发明的目的在于提供一种采用太阳能地源热泵联合,可互相弥补自身不足,提高资源利用效率的设计方法。

    本发明提供如下技术方案:一种太阳能地源热泵供热与空调系统设计方法,其特征在于:包括以下设计步骤:

    步骤1)根据施工地区的气象参数及施工建筑特点设计空调方案;

    步骤2)对地下埋管换热器的传热过程进行分析,根据热负荷选定合适的热泵机组,确定地埋管的设计方案;

    步骤3)计算全年地埋管换热器达到热平衡需要补偿的热量,设计太阳能集热系统。

    所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤1)中,空调设计方案为:根据施工地区的气象参数及施工建筑物内的冷负荷、室内干球温度、室内湿球温度和夏季空调室外计算干球温度,查找室内机制冷容量表,选择大于房间冷负荷的室内机,并根据室内机的组合总容量选择室外机。

    所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤2)包括以下设计步骤:

    步骤2.1)计算热负荷;

    步骤2.2)地埋管的设计与计算:

    根据如下公式(1)及公式(2)进行夏季与冬季地下换热器的换热量的计算:

    q夏=qo×(1 1/cop1)(1)

    q冬=qk×(1-1/cop2)(2)

    式中:qo为热泵机组制冷量,单位为kw;

    qk为热泵机组制热量,单位为kw;

    步骤2.3)确定钻孔总长度:取单位管长的换热量为a,根据如下公式(3)计算钻孔总长度:

    l=q1/a(3);

    步骤2.4)确定管径:集管采用管路的管径大于并联环路采用管路的管径;

    步骤2.5)根据如下公式(4)计算竖井数目:

    n=l/(2×h)(4)

    式中:n:竖井总数,单位为个;

    l:竖井埋管总长,单位为m;

    步骤2.6)布置竖井间距。

    所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤3),包括以下设计步骤:

    步骤3.1)计算需要的补偿热量:根据如下公式(5)计算:

    q补=q总吸-q总排(5)

    步骤3.2)根据补偿的热量来计算太阳能集热器所需的面积,计算公式如下:

    式中:ac:有效集热面积,单位为m2;

    qd:qd=3600×1000,q补:为每日所需热负荷,单位为j;

    f:太阳能保证率;

    j:系统使用期内太阳辐照的集热器受热面日平均辐射热量,单位为kj/m2,这里取j=1.696×107j/m2*d;

    ηcd:集热器全日集热效率,无因次,根据经验值取0.45-0.6;

    ηl:为管路及储水箱损失率,根据经验值取0.2;

    然后,根据计算的集热器所需面积选用合适的集热器;

    步骤3.3)按照如下公式,计算集热器前后排的日照间距s:

    s=h×coth×cosγo(6)

    式中:s:日照间距(m)、

    h:前排集热器的高度(m)、

    h:计算时刻的太阳高度角。

    通过采用上述技术,与现有技术相比,本发明的有益效果如下:

    本发明采用太阳能作为辅助热源,使热泵系统可以按照夏季工况进行设计,由太阳能集热器承担一部分热负荷,降低地源部分的初成本,且可充分利用丰富的太阳能资源,降低了使用成本。

    附图说明

    图1为本发明的地埋管布置平面结构示意图;

    图2为本发明的真空管型太阳能集热器横排主视结构示意图;

    图3为本发明的真空管型太阳能集热器横排俯视结构示意图;

    图4为本发明的太阳能地源热泵连接结构示意图。

    具体实施方式

    为了使本发明的目的、技术方案及优点更加清楚明白,以下结合说明书附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

    相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。

    请参阅图1-4,一种太阳能地源热泵供热与空调系统设计方法,包括以下步骤:

    步骤一:根据该地区的气象参数及建筑特点选用合理的空调设计方案,包括以下步骤:

    1.1)根据空调房间的冷负荷、室内干球温度、室内湿球温度和夏季空调室外计算干球温度,查找室内机制冷容量表,从中选择大于房间冷负荷的室内机;

    1.2)根据室内机的组合总容量选择室外机,这里选择的室内机总的制冷量为32kw,可选室外机rhxyq12pay1。

    步骤二:对地下埋管换热器的传热过程进行分析,根据热负荷选定合适的热泵机组,从而确定地埋管的设计方案,包括以下步骤:

    2.1)计算热负荷、热负荷包括:围护结构的耗热量、围护结构基本耗热量、围护结构附加耗热量、门窗缝隙渗入冷空气的耗热量、外门冷风侵入耗热量等。

    2.2)根据如下公式(1)及公式(2)分别进行夏季与冬季地下换热器的换热量的计算:

    q夏=qo×(1 1/cop1)(1)

    q冬=qk×(1-1/cop2)(2)

    式中:qo为热泵机组制冷量,单位为kw;

    qk为热泵机组制热量,单位为kw。

    2.3)确定钻孔总长度取单位管长的换热量35w/m,根据公式(3)进行计算。

    l=q1/35(3)

    2.4)确定管径要满足实际工程的要求,一般并联环路用小管径,集管用大管径,地下热交换器埋管常用管径有20mm、25mm、32mm、40mm、50mm,管内流速控制在1.22m/s以下,对更大管径的管道,管内流速控制在2.44m/s以下或一般把各管段压力损失控制在4mh2o/100m当量长度以下。本实施例采用聚乙烯pe63(sdr11),并联环路管径为dn20,集管管径分别为dn25、dn32、dn40、dn50。

    2.5)竖井深度多数采用50-100m,设计者可以在此范围内选择一个竖井深度h,代入如下公式(4)计算竖井数目:

    n=l/(2×h)(4)

    式中:n:竖井总数,单位为个;

    l:竖井埋管总长,单位为m。

    2.6)根据有关竖井间距来布置竖井间距:u型管竖井的水平间距一般为4.5m,其中,dn25的u型管,其竖井水平间距为6m,而dn20的u型管,其竖井水平间距为3m。若采用串联连接方式,可采用三角形布置来节约占地面积。本实施例中的竖井间距取4.5m,采用并联系统。

    步骤三:计算全年地埋管换热器达到热平衡需要补偿的热量,从而设计太阳能集热系统,包括以下步骤:

    3.1)计算需要的补偿热量:根据如下公式(5)计算:

    q补=q总吸-q总排(5)

    其中,全年冬季吸热量:从土壤吸收的热量=单位时间吸收热量×每天运行时间×运行天数×负荷调节系数,冬季运行按照150d计算,负荷调节系数按60%计算。

    全年夏季排热量:向土壤排放的热量=单位时间排放热量×每天运行时间×运行天数×负荷调节系数,夏季运行按照90d计算,负荷调节系数按50%计算。

    地埋管换热系统热平衡分析:从上面的计算中可以看出,地埋管换热系统冬季从地下吸收的总热量大于夏季向地下排放的总热量,这种不平衡导致的结果是随着热泵系统的运行,地下岩土层温度逐年降低,导致热泵空调冬季的供暖性能系数会逐年降低。由计算可得全年地埋管换热器达到热平衡所需补偿的热量q补=q总吸-q总排,不平衡率为q补/q总吸。地埋管换热系统需要补偿的热量由太阳能集热系统提供,保证地下换热系统全年的热平衡。

    3.2)根据补偿的热量来计算太阳能集热器所需的面积,计算公式如下:

    式中:ac:有效集热面积,单位为m2;

    qd:qd=3600×1000q补为每日所需热负荷,单位为j;

    f:太阳能保证率;

    j:系统使用期内太阳辐照的集热器受热面日平均辐射热量,单位为kj/m2,这里取j=1.696×107j/m2*d;

    ηcd:集热器全日集热效率,无因次,根据经验值取0.45-0.6;

    ηl:为管路及储水箱损失率,根据经验值取0.2;

    然后,根据计算的集热器所需面积选用合适的集热器;

    步骤3.3)按照如下公式,计算集热器前后排的日照间距s:

    s=h×coth×cosγo(6)

    式中:s:日照间距(m)、

    h:前排集热器的高度(m)、

    h:计算时刻的太阳高度角。

    步骤四:依据相关的空调设计手册所提供的参数,进一步完成vrv、水泵、地源热泵等的选型,从而将其反应在图纸上,最终完成整个空调系统设计。

    以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。


    技术特征:

    1.一种太阳能地源热泵供热与空调系统设计方法,其特征在于:包括以下设计步骤:

    步骤1)根据施工地区的气象参数及施工建筑特点设计空调方案;

    步骤2)对地下埋管换热器的传热过程进行分析,根据热负荷选定合适的热泵机组,确定地埋管的设计方案;

    步骤3)计算全年地埋管换热器达到热平衡需要补偿的热量,设计太阳能集热系统。

    2.根据权利要求1所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤1)中,空调设计方案为:根据施工地区的气象参数及施工建筑物内的冷负荷、室内干球温度、室内湿球温度和夏季空调室外计算干球温度,查找室内机制冷容量表,选择大于房间冷负荷的室内机,并根据室内机的组合总容量选择室外机。

    3.根据权利要求1所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤2)包括以下设计步骤:

    步骤2.1)计算热负荷;

    步骤2.2)地埋管的设计与计算:

    根据如下公式(1)及公式(2)进行夏季与冬季地下换热器的换热量的计算:

    q夏=qo×(1 1/cop1)(1)

    q冬=qk×(1-1/cop2)(2)

    式中:qo为热泵机组制冷量,单位为kw;

    qk为热泵机组制热量,单位为kw;

    步骤2.3)确定钻孔总长度:取单位管长的换热量为a,根据如下公式(3)计算钻孔总长度:

    l=q1/a(3);

    步骤2.4)确定管径:集管采用管路的管径大于并联环路采用管路的管径;

    步骤2.5)根据如下公式(4)计算竖井数目:

    n=l/(2×h)(4)

    式中:n:竖井总数,单位为个;

    l:竖井埋管总长,单位为m;

    步骤2.6)布置竖井间距。

    4.根据权利要求1所述的一种太阳能地源热泵供热与空调系统设计方法,其特征在于所述步骤3),包括以下设计步骤:

    步骤3.1)计算需要的补偿热量:根据如下公式(5)计算:

    q补=q总吸-q总排(5)

    步骤3.2)根据补偿的热量来计算太阳能集热器所需的面积,计算公式如下:

    式中:ac:有效集热面积,单位为m2;

    qd:qd=3600×1000,q补:为每日所需热负荷,单位为j;

    f:太阳能保证率;

    j:系统使用期内太阳辐照的集热器受热面日平均辐射热量,单位为kj/m2,这里取j=1.696×107j/m2*d;

    ηcd:集热器全日集热效率,无因次,根据经验值取0.45-0.6;

    ηl:为管路及储水箱损失率,根据经验值取0.2;

    然后,根据计算的集热器所需面积选用合适的集热器;

    步骤3.3)按照如下公式,计算集热器前后排的日照间距s:

    s=h×coth×cosγo(6)

    式中:s:日照间距(m)、

    h:前排集热器的高度(m)、

    h:计算时刻的太阳高度角。

    技术总结
    一种太阳能地源热泵供热与空调系统设计方法,属于供热系统设计技术领域。它包括以下步骤:1)根据施工地区的气象参数及施工建筑特点选用合理的空调设计方案;2)对地下埋管换热器的传热过程进行分析,根据热负荷选定合适的热泵机组,确定地埋管的设计方案;3)计算全年地埋管换热器达到热平衡需要补偿的热量,设计太阳能集热系统。本发明采用太阳能作为辅助热源,使热泵系统可以按照夏季工况进行设计,由太阳能集热器承担一部分热负荷,降低地源部分的初成本,且可充分利用丰富的太阳能资源,降低了使用成本。

    技术研发人员:江雨馨;朱佳良;贾明伟;郑明凯;娄维尧;蔡姚杰
    受保护的技术使用者:浙江工业大学
    技术研发日:2020.11.25
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-20751.html

    最新回复(0)