基于模糊聚类的飞翼无人机的包线划分以及增益调度方法与流程

    专利2022-07-08  110


    本发明涉及一种新的飞翼无人机包线划分及控制增益调度方法,属于航空器飞行控制技术领域。



    背景技术:

    飞翼无人机飞行包线大,气动力和力矩随高度和动压的变化范围大,非线性和未建模动态特性严重影响飞行控制的品质和稳定性,传统固定控制结构和控制参数的方法已经不能满足飞翼无人机的控制需求。飞翼无人机全包线内飞行过程中的非线性问题迫切需要解决。

    线性增益调度解决了固定控制律适应性差的问题,但仍存在以下亟待解决的问题:如何选择典型工作点,传统方法是通过试凑来选择工作点,这种做法既耗费时间又极其依赖设计者的经验;如何调度控制器参数,通过线性插值得到控制器参数的方法,由于无人机存在未建模动态特性,在某些飞行状态下控制品质较差甚至出现不稳定情况。因此,迫切需要提出一种能针对飞翼无人机进行自动包线划分和平滑增益调度的控制策略。



    技术实现要素:

    发明目的:针对上述现有技术,提出一种基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,实现无人机包线的自动划分和飞行控制增益的平滑和连续输出,以保证无人机在全包线范围内的稳定飞行控制。

    技术方案:基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,包括如下步骤:

    步骤1:将无人机飞行包线根据速度、高度进行等梯度取样,选择每个样本点对应的系统矩阵作为飞行包线的飞行状态样本集;

    步骤2:根据划分有效性指标确定最优的模糊聚类算法参数:聚类中心数和模糊指数;

    步骤3:利用模糊聚类算法对飞行包线样本集划分得到典型的飞行状态和隶属度矩阵;

    步骤4:基于步骤3的包线划分结果,选取速度和动压作为飞行控制律的调度变量;

    步骤5:选取sigmoid型隶属度函数修正由模糊聚类得到的速度和动压的隶属度曲线;

    步骤6:根据t-s模糊增益调度算法计算最优控制增益。

    进一步的,所述步骤1中,无人机的状态空间表示为

    其中,x表示状态变量,u表示控制变量,y表示输出量,a表示系统矩阵,b表示控制矩阵,c表示输出矩阵,d表示前馈矩阵;

    选择每个样本点对应的a阵作为飞行包线划分样本。

    进一步的,所述步骤2中,划分有效性指标包括划分系数pc、划分指数sc、划分熵ce和xie-beni指数,其数学表达式为:

    其中,c表示聚类中心数,n表示样本数据集大小,μik表示第k个样本相对第i个聚类中心的隶属度值,m表示模糊度指数,xk表示第k个数据样本,vi表示第i个聚类中心,vj表示第j个聚类中心;

    通过对比不同聚类中心数和模糊度指数下划分有效性指标的大小,选择最优的包线划分聚类中心数和模糊度指数。

    进一步的,所述步骤3中,利用模糊聚类算法进行飞行包线划分转换为一个带约束的非线性规划问题,通过寻求最优解获得数据集的聚类中心和划分隶属度值,目标函数表示样本点与聚类中心的距离总和,其数学表达式为:

    其中,x为飞行状态集、为隶属度矩阵,v={vi|1≤i≤c,vi∈rn}表示聚类中心集合,rn表示聚类中心的维数,dik表示第k个数据样本和第i个聚类中心的距离;

    模糊聚类算法的迭代计算步骤包括:

    1)计算聚类中心:

    2)计算新的距离范数:

    3)计算新的划分矩阵:

    当||u(l)-u(l-1)||<ε,则迭代结束,否则继续;

    其中,vi(l)表示第l步的vi,表示第(l-1)步uik,djk表示第k个数据样本和第j个聚类中心的距离,u(l)、u(l-1)分别表示第l和(l-1)步的隶属度矩阵,ε表示算法收敛误差。

    进一步的,所述步骤5中,sigmoid型隶属度函数表达式为:

    其中,a表示描述sigmoid型曲线的倾斜程度的参数,e表示sigmoid型曲线中点的位置。

    进一步的,所述步骤6包括:综合速度和动压的隶属度函数fi1,fi2,则组合隶属度函数为μi=fi1fi2,则对于特定的飞行状态,其最优的控制增益通过下式计算:

    其中,fi1,fi2,i=1,…c分别表示速度和动压相对第i个聚类中心的隶属度函数,ki为第i个典型飞行状态对应的控制增益。

    有益效果:1、本发明的一种基于模糊聚类的飞翼无人机包线划分及增益调度方法,克服了传统固定控制律和基于线性插值的增益调度控制律设计方法导致无人机在某些飞行状态的控制律品质差、甚至不稳定等问题。该方法包线划分采用模糊聚类算法,获取无人机的典型飞行状态和一般飞行状态的隶属度,确定最优的飞行包线划分机制;增益调度选择速度和动压为调度变量,采用sigmoid型隶属度函数,提出基于t-s模糊聚类的增益调度策略。该方法实现了无人机控制增益的连续和平稳输出,保证无人机在全包线范围内的稳定飞行控制。

    2、本发明将无人机飞行包线通过模糊聚类划分成几个典型区域,使每个区域可以用一个代表性的飞行状态来近似代替,控制律增益则根据每个飞行状态对于聚类中心的隶属程度来调度,使得增益调度更加符合实际飞行情况。

    3、本发明与离散调度控制和混合输出控制相比,模糊聚类增益调度机制计算得到的控制增益输出更加连续和平滑,将有助于降低控制律切换对无人机飞行性能的影响。

    4、本发明与一般固定控制律在纵、横向控制相比,全包线范围内控制效果的一致性均较好。固定控制律的高度控制回路的超调量在0~10%范围内变化,航迹跟踪控制回路超调量最大达到40%。相同控制结构的条件下,增益调度控制律对无人机飞行高度和航迹的控制效果较好,其中,高度控制回路无超调,调节时间范围为12s~17s;航迹跟踪控制回路超调量较小。基于模糊聚类的增益调度控制律能保证对包线内飞行状态具有满意的控制品质。

    5、本发明基于模糊聚类的包线划分及增益调度方法能够有效的解决飞翼无人机大包线控制过程中的非线性难题。通过包线划分的典型工作点能够体现无人机关键的飞行性能和操稳特性。平滑和连续的增益调度机制增强了无人机飞行控制系统的稳定性,提高了飞行品质。

    附图说明

    图1为样本数据在包线内的分布图;

    图2为模糊聚类划分有效性指标;

    图3为飞行包线划分结果;

    图4为飞行包线划分样本数据极点分布图;

    图5为速度和动压的s型隶属度函数曲线;

    图6为模糊聚类增益调度;

    图7为离散增益调度;

    图8为混合增益调度控制;

    图9为基于模糊聚类的无人机包线划分和增益调度;

    图10为一般控制下高度控制回路阶跃响应;

    图11为一般控制下航迹跟踪控制回路阶跃响应;

    图12为增益调度高度控制回路阶跃响应;

    图13为增益调度航迹跟踪控制回路阶跃响应。

    具体实施方式

    下面结合附图对本发明做更进一步的解释。

    一种基于模糊聚类的飞翼无人机包线划分及增益调度方法,具体步骤如下:

    步骤1:将无人机飞行包线根据速度、高度进行等梯度取样,选择每个样本点对应的系统矩阵作为飞行包线的飞行状态样本集。

    在飞行包线内速度每隔1m/s,高度每隔200m均匀选择1825个飞行状态作为样本点对于飞翼无人机的飞行包线进行取样,如图1所示。

    无人机的状态空间可以表示为

    其中,x表示状态变量,u表示控制变量,y表示输出量,a表示系统矩阵,b表示控制矩阵,c表示输出矩阵,d表示前馈矩阵。

    其状态转移矩阵具有如下形式:

    决定了系统在外部输入为0的条件下,从初始时刻t0到任意时刻t的状态改变情况。无人机动力学系统响应主要与系统矩阵a有关。在忽略迎角变化率和俯仰角速率变化对升力影响的情况下,矩阵a可近似表示为

    其中,αe和μe分别表示迎角的稳态值和轨迹倾角的稳态值,g表示重力加速度,xv,xtv,xα,zv,zα为气流坐标轴系内力的量纲系数,mv,mtv,mα,mq为气流坐标轴系内力矩的量纲系数,它们的表达式如下:

    其中,d表示阻力,t表示推力,m表示质量,α表示攻角,v表示速度,ma表示俯仰气动力矩,mt表示俯仰推力力矩,iy表示俯仰轴转动惯量,表示攻角变化率,q表示俯仰角速率。

    由于系统矩阵a对无人机的运动特性影响较大,选择样本点对应的a阵作为飞行状态样本集合xa={ak|k=1,2,3...,1825}能够全面、准确地反映无人机在飞行包线内的动态性能,增加划分结果的合理性和置信度。

    步骤2:根据划分有效性指标确定最优的模糊聚类算法参数:聚类中心数和模糊指数。

    采用模糊聚类方法对无人机飞行包线进行划分,需要确定聚类算法的参数。算法参数包括聚类中心数c和模糊度指数m,合适的参数能够增强类内相似性和类间分离性,参数的选择可以通过综合比较几种划分有效性指标来确定。划分有效性指标是聚类中心数和样本隶属度的函数,包括划分系数pc、划分指数sc、划分熵ce和xie-beni指数,其数学表达式分别如下:

    其中,c表示聚类中心数,n表示样本数据集大小,μik表示第k个样本相对第i个聚类中心的隶属度值,m表示模糊度指数,xk表示第k个数据样本,vi表示第i个聚类中心,vj表示第j个聚类中心。

    选择聚类中心数c=2,3,...10,运用模糊聚类划分算法对飞行包线进行划分得到相应的样本隶属度矩阵,并应用上式计算出所对应的划分有效性指标。如图2所示,当聚类中心数为3时,划分系数与xie-beni指数都取得最优值,而划分熵和划分指数对于任意c值计算结果均较小,表示划分结果的模糊性较弱,符合增益调度的设计初衷。模糊度指数m一般选择范围在1.5~2.5之间,通过对这一范围不同m值的比较,m=1.7时划分结果不是太模糊,同时能够抑制奇异点噪声的不利影响。

    步骤3:利用模糊聚类算法对飞行包线样本集划分得到典型的飞行状态和隶属度矩阵。

    基于模糊聚类算法将包线划分转换成为一个带约束的非线性规划问题,通过寻求最优解获得数据集的聚类中心和划分隶属度值,目标函数表示样本点与聚类中心的距离总和,其数学表达式为:

    目标函数表示样本点与聚类中心的距离总和,函数值越小表示划分结果越合理。v={vi|1≤i≤c,vi∈rn}表示聚类中心集合,m∈[1,∞),rn表示聚类中心的维数,dik表示第k个数据样本和第i个聚类中心的距离。模糊聚类划分算法的迭代计算步骤包括:

    1)计算聚类中心:

    2)计算新的距离范数:

    3)计算新的划分矩阵:

    若||u(l)-u(l-1)||<ε则迭代结束,否则继续。

    其中,vi(l)表示第l步的vi,表示第(l-1)步uik,djk表示第k个数据样本和第j个聚类中心的距离,u(l)、u(l-1)分别表示第l和(l-1)步的隶属度矩阵,ε表示算法收敛误差。

    根据模糊聚类划分算法获得隶属度矩阵如下形式:

    运用模糊聚类划分算法将无人机飞行包线划分成三个区域,如图3所示,而图4给出了全包线所有样本数据极点分布图,可以看出短周期极点主要集中在三个区域,同时也是划分得到的聚类中心(2400,52)、(2800,42)、(3000,96)所对应的短周期极点恰好分别处于这三个不同区域,这进一步验证了模糊聚类算法对飞行包线划分的有效性。

    步骤4:基于步骤3的包线划分结果,选取速度和动压作为飞行控制律的调度变量。

    选取的调度变量应该能够最大程度反应飞行状态对于聚类中心的隶属情况。分别从高度,速度,动压三个方面观察飞行状态对聚类中心的隶属情况。对于飞行动压对飞翼无人机状态划分的影响,考虑到飞行动压既包含速度信息,又包含高度信息,同时也影响无人机所受力和力矩的计算。因此,选择动压和速度作为调度变量对于区分飞行状态在理论上具有可行性。基于动压的隶属度曲线能够区分飞行状态对于聚类中心的隶属情况,其形状与调度变量为空速的情况相类似。将两个调度变量(动压和空速)所对应的隶属度曲线相结合,可以准确地计算无人机的飞行状态对于三个典型飞行状态的隶属情况。

    选择速度和动压为调度变量,t-s模糊增益调度算法中的权重μi可通过下式计算得到

    λi=τ1i×τ2i,

    其中,τ1i和τ2i是分别从速度和动压的角度来描述当前飞行状态对于第i个聚类中心的隶属情况,其值由包线划分隶属度矩阵来决定,μi为当前飞行状态对于第i个聚类中心的隶属度值,λi表示当前飞行状态对于第i个聚类中心的综合隶属情况。将空速和动压所对应的隶属度曲线相结合,可以准确地计算飞翼无人机的飞行状态对于三个典型飞行状态的隶属情况。

    步骤5:选取sigmoid型隶属度函数修正由模糊聚类得到的速度和动压的隶属度曲线。

    选取隶属度函数,即反应飞行状态对于聚类中心的隶属关系的映射函数。首先通过隶属度值对单个调度变量坐标平面的投影来观察飞行状态的隶属度,而投影给出的是对应的最大隶属度值。直接投影得到的隶属度曲线在某些区域存在奇值点,且无法给出准确的表达式,影响调度算法的工程实现。通过对隶属度曲线进行适当的调整,使所有的飞行状态能够完整、有效地属于各个聚类中心,保证调度过程的平滑和稳定。梯形和三角形隶属度函数满足线性隶属关系的情况,需要修正的隶属度关系曲线是通过模糊划分得到的,线性关系不能准确表现其模糊特性。因此,选择sigmoid型函数来近似修正隶属度曲线,sigmoid型函数数学表达式为:

    其中,a表示描述sigmoid型曲线的倾斜程度的参数,e表示sigmoid型曲线中点的位置。

    通过对原始隶属度曲线的近似修正,使聚类内部的飞行状态与聚类中心尽量接近,而与其他聚类中心尽量分离,最后可以得到如图5的空速和动压的sigmoid型隶属度函数曲线。图中隶属度函数的数学表达式如下:

    步骤6,根据t-s模糊增益调度算法计算最优控制增益。

    无人机低速飞行时,控制增益主要由典型飞行状态一和状态二所对应的增益来决定,飞行高度差异靠与飞行动压相关的隶属度函数值来区分;当无人机高速飞行时,控制增益主要由典型飞行状态一和状态三来决定,其中状态三的影响较大。根据给出的隶属度函数即为t-s模糊增益调度算法中的模糊逻辑,描述了某飞行状态对典型状态的隶属关系。在特定飞行状态下的最佳控制增益可以通过下式获得

    k=k1*f11*f12 k2*f21*f22 k3*f31*f32

    基于模糊聚类的增益调度方法如图6,与离散调度控制(如图7)和混合输出控制(图8)相比,模糊聚类方法计算得到的控制增益输出更加连续和平滑,将有助于降低控制律变化对无人机飞行性能的影响。基于模糊聚类的无人机包线划分和增益调度方法如图9。全包线范围内,本方法与一般控制律纵、横向控制相比,控制效果的一致性均较好。如图10-11所示,一般控制律的高度控制回路的超调量在0~10%范围内变化,航迹跟踪控制回路超调量最大达到40%。如图12-13所示,相同控制结构的条件下,基于模糊聚类的增益调度控制律对无人机飞行高度和航迹的控制效果较好,航迹跟踪控制回路超调量较小,其中高度控制回路无超调。当控制增益不变时,控制律不能保证对包线内飞行状态具有满意的控制品质。

    以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。


    技术特征:

    1.基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,包括如下步骤:

    步骤1:将无人机飞行包线根据速度、高度进行等梯度取样,选择每个样本点对应的系统矩阵作为飞行包线的飞行状态样本集;

    步骤2:根据划分有效性指标确定最优的模糊聚类算法参数:聚类中心数和模糊指数;

    步骤3:利用模糊聚类算法对飞行包线样本集划分得到典型的飞行状态和隶属度矩阵;

    步骤4:基于步骤3的包线划分结果,选取速度和动压作为飞行控制律的调度变量;

    步骤5:选取sigmoid型隶属度函数修正由模糊聚类得到的速度和动压的隶属度曲线;

    步骤6:根据t-s模糊增益调度算法计算最优控制增益。

    2.根据权利要求1所述的基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,所述步骤1中,无人机的状态空间表示为

    其中,x表示状态变量,u表示控制变量,y表示输出量,a表示系统矩阵,b表示控制矩阵,c表示输出矩阵,d表示前馈矩阵;

    选择每个样本点对应的a阵作为飞行包线划分样本。

    3.根据权利要求1所述的基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,所述步骤2中,划分有效性指标包括划分系数pc、划分指数sc、划分熵ce和xie-beni指数,其数学表达式为:

    其中,c表示聚类中心数,n表示样本数据集大小,μik表示第k个样本相对第i个聚类中心的隶属度值,m表示模糊度指数,xk表示第k个数据样本,vi表示第i个聚类中心,vj表示第j个聚类中心;

    通过对比不同聚类中心数和模糊度指数下划分有效性指标的大小,选择最优的包线划分聚类中心数和模糊度指数。

    4.根据权利要求3所述的基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,所述步骤3中,利用模糊聚类算法进行飞行包线划分转换为一个带约束的非线性规划问题,通过寻求最优解获得数据集的聚类中心和划分隶属度值,目标函数表示样本点与聚类中心的距离总和,其数学表达式为:

    其中,x为飞行状态集、为隶属度矩阵,v={vi|1≤i≤c,vi∈rn}表示聚类中心集合,rn表示聚类中心的维数,dik表示第k个数据样本和第i个聚类中心的距离;

    模糊聚类算法的迭代计算步骤包括:

    1)计算聚类中心:

    2)计算新的距离范数:

    3)计算新的划分矩阵:

    当||u(l)-u(l-1)||<ε,则迭代结束,否则继续;

    其中,vi(l)表示第l步的vi,表示第(l-1)步uik,djk表示第k个数据样本和第j个聚类中心的距离,u(l)、u(l-1)分别表示第l和(l-1)步的隶属度矩阵,ε表示算法收敛误差。

    5.根据权利要求4所述的基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,所述步骤5中,sigmoid型隶属度函数表达式为:

    其中,a表示描述sigmoid型曲线的倾斜程度的参数,e表示sigmoid型曲线中点的位置。

    6.根据权利要求5所述的基于模糊聚类的飞翼无人机的包线划分以及增益调度方法,其特征在于,所述步骤6包括:综合速度和动压的隶属度函数fi1,fi2,则组合隶属度函数为μi=fi1fi2,则对于特定的飞行状态,其最优的控制增益通过下式计算:

    其中,fi1,fi2,i=1,…c分别表示速度和动压相对第i个聚类中心的隶属度函数,ki为第i个典型飞行状态对应的控制增益。

    技术总结
    本发明公开了一种基于模糊聚类的飞翼无人机包线划分及增益调度方法,解决常规线性插值增益调度机制无法应对无人机大包线非线性特性的难题。该方法采用模糊聚类算法,获取无人机典型飞行状态和隶属度矩阵,确定最优的飞行包线划分机制;选择速度和动压作为调度变量,设计基于Sigmoid型隶属度函数的T‑S模糊增益调度策略。该方法实现了无人机控制增益的连续输出和平稳过渡,保证无人机在全包线范围内的稳定飞行控制。

    技术研发人员:李春涛;赵振根;梁惠勇;程磊;李雪兵;苏子康
    受保护的技术使用者:南京航空航天大学
    技术研发日:2020.11.18
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-20687.html

    最新回复(0)