基于分配因子和信息熵的母线负荷组合预测方法及系统与流程

    专利2022-07-08  102


    本发明涉及电网技术领域,尤其涉及一种基于分配因子和信息熵的母线负荷组合预测方法及系统。



    背景技术:

    与传统的负荷总量预测不同,母线负荷预测更加关注电网调度的精益化水平,是各地区底层调度控制的重要参考。但是,由于母线体量众多,负荷基数小,负荷特性各异,且存在较大的波动性和随意性,导致目前还没有一种特别有效的母线负荷预测方法,能够同时保证预测精度、稳定性并降低计算的规模和时间。



    技术实现要素:

    本发明所要解决的技术问题是针对现有技术的不足,提供一种基于分配因子和信息熵的母线负荷组合预测方法及系统。

    本发明解决上述技术问题的技术方案如下:

    一种基于分配因子和信息熵的母线负荷组合预测方法,包括:

    确定预测日,根据电网中的负荷确定所述预测日的相似日;

    根据所述相似日的各类型负荷的历史数据确定分配因子;

    确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据所述权重向量对每个所述预测模型进行加权,得到组合预测模型;

    根据所述分配因子对所述历史数据进行处理后,输入到所述组合预测模型中,得到所述预测日的母线负荷预测结果。

    本发明解决上述技术问题的另一种技术方案如下:

    一种基于分配因子和信息熵的母线负荷组合预测系统,包括:

    相似日确定单元,用于确定预测日,根据电网中的负荷确定所述预测日的相似日;

    分配因子确定单元,用于根据所述相似日的各类型负荷的历史数据确定分配因子;

    预测模型确定单元,用于确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据所述权重向量对每个所述预测模型进行加权,得到组合预测模型;

    预测单元,用于根据所述分配因子对所述历史数据进行处理后,输入到所述组合预测模型中,得到所述预测日的母线负荷预测结果。

    本发明的有益效果是:本发明适用于母线负荷预测,通过先根据电网中的负荷确定相似日,得到分配因子,再结合信息熵确定多个预测模型的权重,结合了分配因子和信息熵对母线负荷进行预测,提高了类型负荷预测精度,能够同时保证预测精度、稳定性并降低计算的规模和时间。

    本发明附加的方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实践了解到。

    附图说明

    图1为本发明母线负荷组合预测方法的实施例提供的流程示意图;

    图2为本发明母线负荷组合预测系统的实施例提供的结构框架图。

    具体实施方式

    以下结合附图对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。

    目前,母线负荷预测可以分为两类方法。一类是基于历史数据的预测方法,已经有众多成熟的模型,如支持向量机、灰色模型、马尔可夫链、组合预测模型等,其中组合预测被认为是保障预测稳定性的重要方法。基于历史数据的方法预测精度较高,但需要对各个母线单独建模,大大的增加了预测的工作量,不利于实际工作的开展。另一类方法是基于负荷分配的方法,首先对系统总负荷进行预测,然后根据配比模型分配到每一母线上,这类方法耗时短,但对单个母线负荷自身特性的考虑有所欠缺,且分配因子的确定较为主观,无法保证预测精度。

    基于此,本发明提供了一种新的母线负荷预测方法,下面详细说明。

    如图1所示,为本发明母线负荷组合预测方法的实施例提供的流程示意图,该母线负荷组合预测方法基于分配因子和信息熵实现,适用于母线负荷预测,该方法包括:

    s1,确定预测日,根据电网中的负荷确定预测日的相似日;

    母线负荷不仅具有日周期性,还具有周周期性,因此,可以根据日周期性或周周期性选取相似日,例如,假设电网中负荷每隔7日变会呈现周期性变化,那么假设预测下一天的母线负荷,那么可以选取7天之前的那天作为相似日。

    通过筛选与预测日情况较为相似的相似日,从而使历史负荷数据也是确定分配因子和组合预测模型权重的重要依据。

    s2,根据相似日的各类型负荷的历史数据确定分配因子;

    应理解,分配因子即各负荷的分配系数,假设前n天每小时的母线负荷为已知数据,应该最小二乘模型对n天已知的历史数据进行分析,进而预测第n 1天各负荷的分配系数。

    设pa,k,i(t)为第i天k类型在t时刻的类型负荷,利用最小二乘模型中的一次曲线y=p q·i,对前n天的历史数据进行计算,由最小乘法的相关公式,可得:

    其中,k和t在每次计算中都是定值。

    这样就得到一次曲线y=p q·i,这条曲线能够很好的度量前n天负荷的变化趋势,然后利用这个变化趋势来预测n 1天的值。可得到n 1天的初步母线负荷为:

    pa,k,i(t)=p q(n 1)

    应理解,初步母线负荷不是最终的预测值,而母线负荷不仅具有日周期性,还具有周周期性,对于第i天的母线负荷预测,这里可以取前n天中同类型日的历史数据作为预测依据,但这样所依据的预测数据的量会大幅减少,增加母线负荷随机性对预测结果的影响,所以需要进行相似日的选取,降低计算工作量和准确率。

    通过改变t的取值,重复应用上述过程,就可以确定n 1天的类型负荷数据。利用这些数据,就可以计算出n 1天k类型t时刻的类型负荷分配系数ka,k,n 1(t):

    式中c表示预测系统中划分类型的类型,c为计数变量。

    s3,确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据权重向量对每个预测模型进行加权,得到组合预测模型;

    需要说明的是,预测模型的数据和类型可以根据实际需求进行选择,例如,可以包括:支持向量机、灰色模型、马尔可夫链和组合预测模型等。

    应理解,组合预测模型是由k个单一预测模型组成,通过历史数据确定单一预测模型在组合预测模型中的相对有效度,假设yt是在t时刻的组合预测值,ωit是t时刻第i个预测模型的权重,是t时刻第i个预测模型的预测值。则组合预测的问题表述如下

    由该式可知,影响最终组合预测模型的因素有两个,一个是单一模型的预测值,另一个是单一预测模型的权重。本实施例采用的单一预测模型均为当前预测精度较为良好且应用广泛的模型,可以包括灰色模型、支持向量机、和人工神经网络。求误差ec的平方和最小:

    其中,y(t)是在t时刻的实际预测值,为t时刻第i个预测模型的预测值,ωi(t)是t时刻第i个预测模型的权重。

    上式中追求的目标是在历史预测过程中所有误差的平方和最小。这样做的弊端是没有考虑个别异常时刻误差过大导致的整个模型失效。而信息熵由香龙于1948年提出,是信息论中信息无序程度的度量。某属性信息熵越大,信息无序度越高,信息量越小,其在评价中的权重越小,因此信息熵可用于评估组合预测模型中权重的大小。

    具体地,可以以组合预测的预测精度为目标属性,待求量为各预测模型的权重,将相似日序列各预测模型的预测值作为评估对象。

    s4,根据分配因子对历史数据进行处理后,输入到组合预测模型中,得到预测日的母线负荷预测结果。

    本实施例适用于母线负荷预测,通过先根据电网中的负荷确定相似日,得到分配因子,再结合信息熵确定多个预测模型的权重,结合了分配因子和信息熵对母线负荷进行预测,提高了类型负荷预测精度,能够同时保证预测精度、稳定性并降低计算的规模和时间。

    可选地,在一些可能的实施方式中,根据电网中的负荷确定预测日的相似日,具体包括:

    确定至少两个负荷相关因素,根据全部负荷相关因素确定每个历史日和预测日的特征向量,根据特征向量之间的几何空间距离确定每个历史日与预测日的日特征相似度;

    应理解,负荷相关因素可以为与电网负荷相关的影响因素,例如,可以为温度,降雨,日类型等。

    确定预设日周期,根据预设日周期确定每个历史日和预测日的平均负荷序列,根据平均负荷序列确定每个历史日与预测日的趋势相似度;

    应理解,平均负荷序列指的是一定时期内平均负荷的集合,可以从一定程度上反映负荷的变化趋势,从而用于判断不同日的相似性。

    根据日特征相似度和趋势相似度确定总相似度,根据总相似度从全部历史日中选择预测日的相似日。

    可选地,可以对日特征相似度和趋势相似度进行加权后求和,得到总相似度,也可以直接将二者相加,得到总相似度。

    可选地,在一些可能的实施方式中,根据以下公式计算总相似度:

    tij=βfij λoij

    λ β=1

    其中,tij表示第i日和第j日的总相似度,oij表示第i日和第j日的日特征相似度,fij表示第i日和第j日的趋势相似度,λ和β为已知参数,h表示负荷相关因素的数量,第i日的日特征向量为(ui1,ui2,…,uih)t,第j日的日特征向量为(uj1,uj2,…,ujh)t,u表示负荷相关因素,表示第i日的预设日周期的平均负荷序列,表示第j日的预设日周期的平均负荷序列,表示第i日负荷序列的平均负荷,为第j日负荷序列的平均负荷,k为预设日周期的天数,e()表示数学期望,d()表示方差。

    表示求的数学期望,表示求的数学期望,表示求的数学期望,表示求的方差,表示求的方差。

    优选地,预设日周期可以为第i日之前(包含第i日)的k日,或者第j日(包含第j日)之前的k日,k一般取为4~7日。

    应理解,λ和β可以通过预测日和历史日已知的趋势相似度及日特征相似度,应用最小二乘法求得。tij越小,则表示ij两日的时间序列越相似,可以选取tij最小值对应的历史日作为相似日。

    可选地,在一些可能的实施方式中,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据权重向量对每个预测模型进行加权,得到组合预测模型,具体包括:

    构造决策矩阵,计算决策矩阵的特征值,得到特征值矩阵;

    对特征值矩阵进行规范化处理和归一化处理,得到标准矩阵;

    根据标准矩阵计算目标属性的信息熵,通过信息熵确定每个预测模型的权重向量。

    例如,构造预测时刻t下的决策矩阵c=(cpq)m×s,其中cpq为第p个模型在第q相似日的预测值,m表示预测模型的数量,s表示相似日的总天数。

    求取矩阵c的特征值,并将对应的特征值向量组成特征值矩阵:

    然后对特征值矩阵进行规范化处理,然后对每一行进行归一化处理,得到矩阵r,计算公式为:

    r=(rpq)m×s

    可选地,在一些可能的实施方式中,根据以下公式计算权重向量:

    r=(rpq)m×s

    其中,ωpt表示第p个预测模型在t时刻的权重向量,ep表示第p个预测模型的信息熵,r表示标准矩阵,m表示预测模型的数量,s表示相似日的总天数,rpq表示规范化处理和归一化处理后的第p个预测模型在第q相似日的特征向量,r′pq表示中间变量。

    应理解,考虑到对数函数的性质,规定当r′pq=0时,r′pqlnr′pq=0。模型意义是某些时刻熵权特别小的模型其权重值可以为0。

    通过各属性的信息熵可以得到各预测模型在t时刻的权重,更改t的数值,就可以得到一整天各个时刻的预测权重值。权重乘以预测结果,这样就得到了类型负荷的预测值。最终各母线的负荷值应为各分配因子和预测值的乘积。

    应理解,在一些可能的实施方式中,在能够实现的前提下,一些其他的实施例可以包含上述任意实施方式的全部或部分。

    如图2所示,为本发明母线负荷组合预测系统的实施例提供的结构框架图,该母线负荷组合预测系统基于分配因子和信息熵实现,适用于母线负荷预测,该系统包括:

    相似日确定单元1,用于确定预测日,根据电网中的负荷确定预测日的相似日;

    分配因子确定单元2,用于根据相似日的各类型负荷的历史数据确定分配因子;

    预测模型确定单元3,用于确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据权重向量对每个预测模型进行加权,得到组合预测模型;

    预测单元4,用于根据分配因子对历史数据进行处理后,输入到组合预测模型中,得到预测日的母线负荷预测结果。

    本实施例适用于母线负荷预测,通过先根据电网中的负荷确定相似日,得到分配因子,再结合信息熵确定多个预测模型的权重,结合了分配因子和信息熵对母线负荷进行预测,提高了类型负荷预测精度,能够同时保证预测精度、稳定性并降低计算的规模和时间。

    可选地,在一些可能的实施方式中,相似日确定单元1具体用于确定至少两个负荷相关因素,根据全部负荷相关因素确定每个历史日和预测日的特征向量,根据特征向量之间的几何空间距离确定每个历史日与预测日的日特征相似度;

    确定预设日周期,根据预设日周期确定每个历史日和预测日的平均负荷序列,根据平均负荷序列确定每个历史日与预测日的趋势相似度;

    根据日特征相似度和趋势相似度确定总相似度,根据总相似度从全部历史日中选择预测日的相似日。

    可选地,在一些可能的实施方式中,相似日确定单元1具体根据以下公式计算总相似度:

    tij=βfij λoij

    λ β=1

    其中,tij表示第i日和第j日的总相似度,oij表示第i日和第j日的日特征相似度,fij表示第i日和第j日的趋势相似度,λ和β为已知参数,h表示负荷相关因素的数量,第i日的日特征向量为(ui1,ui2,…,uih)t,第j日的日特征向量为(uj1,uj2,…,ujh)t,u表示负荷相关因素,表示第i日的预设日周期的平均负荷序列,表示第j日的预设日周期的平均负荷序列,表示第i日负荷序列的平均负荷,为第j日负荷序列的平均负荷,k为预设日周期的天数,e()表示数学期望,d()表示方差。

    可选地,在一些可能的实施方式中,预测模型确定单元3具体用于构造决策矩阵,计算决策矩阵的特征值,得到特征值矩阵;

    对特征值矩阵进行规范化处理和归一化处理,得到标准矩阵;

    根据标准矩阵计算目标属性的信息熵,通过信息熵确定每个预测模型的权重向量。

    可选地,在一些可能的实施方式中,预测模型确定单元3具体根据以下公式计算权重向量:

    r=(rpq)m×s

    其中,ωpt表示第p个预测模型在t时刻的权重向量,ep表示第p个预测模型的信息熵,r表示标准矩阵,m表示预测模型的数量,s表示相似日的总天数,rpq表示规范化处理和归一化处理后的第p个预测模型在第q相似日的特征向量,r′pq表示中间变量。

    应理解,在一些可能的实施方式中,在能够实现的前提下,一些其他的实施例可以包含上述任意实施方式的全部或部分。

    应理解,以上实施例为与本发明方法实施例对应的产品实施例,二者技术方案对应,因此,上述产品实施例的具体说明可以参照上述各方法实施方式,在此不再赘述。

    可以理解,本发明还可以提供一种存储介质,该存储介质中存储有指令,当计算机读取指令时,使计算机执行如上述任意实施方式公开的基于分配因子和信息熵的母线负荷组合预测方法。

    可以理解,本发明还可以提供一种电子设备,包括:

    存储器,用于存储计算机程序;

    处理器,用于执行计算机程序,实现如上述任意实施方式公开的基于分配因子和信息熵的母线负荷组合预测方法。

    读者应理解,在本说明书的描述中,参考术语″一个实施例″、″一些实施例″、″示例″、″具体示例″、或″一些示例″等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

    在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例仅仅是示意性的,例如,步骤的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个步骤可以结合或者可以集成到另一个步骤,或一些特征可以忽略,或不执行。

    上述方法如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(rom,read-onlymemory)、随机存取存储器(ram,randomaccessmemory)、磁碟或者光盘等各种可以存储程序代码的介质。

    以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。


    技术特征:

    1.一种基于分配因子和信息熵的母线负荷组合预测方法,其特征在于,包括:

    确定预测日,根据电网中的负荷确定所述预测日的相似日;

    根据所述相似日的各类型负荷的历史数据确定分配因子;

    确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据所述权重向量对每个所述预测模型进行加权,得到组合预测模型;

    根据所述分配因子对所述历史数据进行处理后,输入到所述组合预测模型中,得到所述预测日的母线负荷预测结果。

    2.根据权利要求1所述的基于分配因子和信息熵的母线负荷组合预测方法,其特征在于,根据电网中的负荷确定所述预测日的相似日,具体包括:

    确定至少两个负荷相关因素,根据全部所述负荷相关因素确定每个历史日和所述预测日的特征向量,根据特征向量之间的几何空间距离确定每个历史日与所述预测日的日特征相似度;

    确定预设日周期,根据所述预设日周期确定每个历史日和所述预测日的平均负荷序列,根据所述平均负荷序列确定每个历史日与所述预测日的趋势相似度;

    根据所述日特征相似度和所述趋势相似度确定总相似度,根据所述总相似度从全部历史日中选择所述预测日的相似日。

    3.根据权利要求2所述的基于分配因子和信息熵的母线负荷组合预测方法,其特征在于,根据以下公式计算所述总相似度:

    tij=βfij λoij

    λ β=1

    其中,tij表示第i日和第j日的总相似度,oij表示第i日和第j日的日特征相似度,fij表示第i日和第j日的趋势相似度,λ和β为已知参数,h表示负荷相关因素的数量,第i日的日特征向量为(ui1,ui2,…,uih)t,第j日的日特征向量为(uj1,uj2,…,ujh)t,u表示负荷相关因素,表示第i日的预设日周期的平均负荷序列,表示第j日的预设日周期的平均负荷序列,表示第i日负荷序列的平均负荷,为第j日负荷序列的平均负荷,k为预设日周期的天数,e()表示数学期望,d()表示方差。

    4.根据权利要求1至3中任一项所述的基于分配因子和信息熵的母线负荷组合预测方法,其特征在于,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据所述权重向量对每个所述预测模型进行加权,得到组合预测模型,具体包括:

    构造决策矩阵,计算所述决策矩阵的特征值,得到特征值矩阵;

    对所述特征值矩阵进行规范化处理和归一化处理,得到标准矩阵;

    根据所述标准矩阵计算目标属性的信息熵,通过所述信息熵确定每个所述预测模型的权重向量。

    5.根据权利要求4所述的基于分配因子和信息熵的母线负荷组合预测方法,其特征在于,根据以下公式计算权重向量:

    r=(rpq)m×s

    其中,ωpt表示第p个预测模型在t时刻的权重向量,ep表示第p个预测模型的信息熵,r表示标准矩阵,m表示预测模型的数量,s表示相似日的总天数,rpq表示规范化处理和归一化处理后的第p个预测模型在第q相似日的特征向量,r′pq表示中间变量。

    6.一种基于分配因子和信息熵的母线负荷组合预测系统,其特征在于,包括:

    相似日确定单元,用于确定预测日,根据电网中的负荷确定所述预测日的相似日;

    分配因子确定单元,用于根据所述相似日的各类型负荷的历史数据确定分配因子;

    预测模型确定单元,用于确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据所述权重向量对每个所述预测模型进行加权,得到组合预测模型;

    预测单元,用于根据所述分配因子对所述历史数据进行处理后,输入到所述组合预测模型中,得到所述预测日的母线负荷预测结果。

    7.根据权利要求6所述的基于分配因子和信息熵的母线负荷组合预测系统,其特征在于,所述相似日确定单元具体用于确定至少两个负荷相关因素,根据全部所述负荷相关因素确定每个历史日和所述预测日的特征向量,根据特征向量之间的几何空间距离确定每个历史日与所述预测日的日特征相似度;

    确定预设日周期,根据所述预设日周期确定每个历史日和所述预测日的平均负荷序列,根据所述平均负荷序列确定每个历史日与所述预测日的趋势相似度;

    根据所述日特征相似度和所述趋势相似度确定总相似度,根据所述总相似度从全部历史日中选择所述预测日的相似日。

    8.根据权利要求7所述的基于分配因子和信息熵的母线负荷组合预测系统,其特征在于,所述相似日确定单元具体根据以下公式计算所述总相似度:

    tij=βfij λoij

    λ β=1

    其中,tij表示第i日和第j日的总相似度,oij表示第i日和第j日的日特征相似度,fij表示第i日和第j日的趋势相似度,λ和β为已知参数,h表示负荷相关因素的数量,第i日的日特征向量为(ui1,ui2,…,uih)t,第j日的日特征向量为(uj1,uj2,…,ujh)t,u表示负荷相关因素,表示第i日的预设日周期的平均负荷序列,表示第j日的预设日周期的平均负荷序列,表示第i日负荷序列的平均负荷,为第j日负荷序列的平均负荷,k为预设日周期的天数,e()表示数学期望,d()表示方差。

    9.根据权利要求6至8中任一项所述的基于分配因子和信息熵的母线负荷组合预测系统,其特征在于,所述预测模型确定单元具体用于构造决策矩阵,计算所述决策矩阵的特征值,得到特征值矩阵;

    对所述特征值矩阵进行规范化处理和归一化处理,得到标准矩阵;

    根据所述标准矩阵计算目标属性的信息熵,通过所述信息熵确定每个所述预测模型的权重向量。

    10.根据权利要求9所述的基于分配因子和信息熵的母线负荷组合预测系统,其特征在于,所述预测模型确定单元具体根据以下公式计算权重向量:

    r=(rpq)m×s

    其中,ωpt表示第p个预测模型在t时刻的权重向量,ep表示第p个预测模型的信息熵,r表示标准矩阵,m表示预测模型的数量,s表示相似日的总天数,rpq表示规范化处理和归一化处理后的第p个预测模型在第q相似日的特征向量,r′pq表示中间变量。

    技术总结
    本发明公开了一种基于分配因子和信息熵的母线负荷组合预测方法系统,涉及电网技术领域。该方法包括:确定预测日,根据电网中的负荷确定预测日的相似日;根据相似日的各类型负荷的历史数据确定分配因子;确定至少两个预测模型,以预测精度为目标属性,通过信息熵确定每个预测模型的权重向量,根据权重向量对每个预测模型进行加权,得到组合预测模型;根据分配因子对历史数据进行处理后,输入到组合预测模型中,得到预测日的母线负荷预测结果。本发明适用于母线负荷预测,提高了类型负荷预测精度,能够同时保证预测精度、稳定性并降低计算的规模和时间。

    技术研发人员:蒋燕;何金定;李秀峰;高道春;段睿钦;吴洋;赵珍玉;周彬彬;陈凯;王有香;周涵;张聪通;栾毅;尹成全;吴东平
    受保护的技术使用者:云南电网有限责任公司
    技术研发日:2020.11.12
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-20535.html

    最新回复(0)