软粘土电渗固结的多物理场耦合分析方法与流程

    专利2022-07-08  113


    本发明涉及电渗固结分析技术领域,具体涉及软粘土电渗固结非线性分析方法。



    背景技术:

    长三角地区经济发达,该区域广泛分布着软粘土,软粘土具有含水率高、压缩性高、抗剪强度低、渗透系数小等特点,需对其进行必要的人工地基处理以获得较高的地基承载力。电渗固结技术通过在土体内部通过直流电,土体中产生电渗流,通过土体内部排水完成固结,提高土体强度,是一种具有较好应用前景的软土地基处理技术。目前,关于软土电渗固结分析主要以解析法和数值法为主。

    解析法通常将土体看作线弹性体,应用简化的一维esrig电渗固结理论,对土体在固结过程中表现出来的渗透系数、弹性模量随着孔隙比变化考虑不足,而土体的渗透系数、弹性模量对电渗固结沉降计算有着重要的影响,因此该方法不能描述土体内部超静孔隙水压力时空发展规律。

    数值法一般采用弹性模型来模拟土体,不能反映土体固结过程中孔隙比的变化对渗透系数、弹性模量等物理量的影响,例如胡黎明、吴伟令、吴辉等提出的软土地基电渗固结理论分析与数值模拟,该方法将土体弹性模量视为常量,夸大了土体排水量,没有计入土体和箱壁之间的摩擦力,最大沉降量位置和试验测试位置有差异。

    采用以上分析方法得出的结果与实验结果存在较大误差,不适于指导室内电渗固结模型试验设计。



    技术实现要素:

    本发明要解决的技术问题是提供了软粘土电渗固结多物理场耦合分析方法,可以有效地考虑电渗固结过程中,多种物理场的耦合特征,分析结果可靠,能够有效指导室内电渗固结模型试验设计。

    为了解决上述技术问题,本发明提供了软粘土电渗固结多物理场耦合分析方法,包括如下步骤:

    建立土体的多物理场方程组;

    将上述多物理场方程组中的各方程分别改写成弱形式;

    对上述弱形式进行离散,获得电渗固结耦合分析的有限元控制方程组并求解。

    进一步的,所述多物理场方程组包括应力场的应力平衡方程、渗流场的孔隙水流动连续方程以及电场的电场控制方程。

    进一步的,所述应力平衡方程由biot固结理论和有效应力原理得到。

    进一步的,采用伽辽金方法对上述弱形式进行离散,获得电渗固结有限元分析控制方程组,在matlab上编写程序,进行多物理场耦合分析。

    进一步的,所述多物理场耦合分析的步骤包括:

    建立分析模型几何形状并导入有限元分析软件;指定区域土体物理参数;确定应力边界条件、排水/不排水边界;确定分析类行为瞬态分析,设定分析起止时间、步长;求解。

    进一步的,所述土体物理参数包括初始孔隙比,以及渗透系数、电渗透系数和电导率定义为初始孔隙比的函数的具体形式。

    进一步的,所述应力边界条件、排水/不排水边界为:两侧设置横向位移约束,底部设置竖向位移约束,左右两侧还施加弹性基础层;阳极和底部设置为不排水边界,阴极和表面设置为排水边界。

    进一步的,所述多物理场方程组是在二维平面条件下建立的。

    进一步的,所述多物理场方程组存在边界条件,包括dirichlet边界条件,即指定边界孔隙水压力、位移,以及neumann边界条件,即指定边界处流量。

    进一步的,所述土体的骨架采用非弹性本构模型。

    本发明的软粘土电渗固结多物理场耦合分析方法与现有技术相比的有益效果是,充分考虑各物理场耦合特征,得到更可靠的数值结果和分析结果,从而能够有效指导室内电渗固结模型试验设计。

    附图说明

    图1是超静孔隙水压力在本发明方法中的计算值与esrig解析解的对比图;

    图2是本发明的试验装置示意图;

    图3(a)是本发明的试验得出的模型表面固结沉降分布;

    图3(b)是本发明阳极沉降计算值与试验值对比图;

    图4(a)是本发明得出的阳极超静孔隙水压力;

    图4(b)是本发明得出阳极电渗固结归一化超静孔隙水压力;

    图5(a)是本发明得出的阳极表面沉降随时间的变化情况;

    图5(b)是本发明得出的阳极位置平均固结度随时间的变化情况。

    图2中标号说明:1、直流电源;2、土样箱;3、阳极腔室;4、阴极腔室;5、多孔排水板;6、土工布;7、镀钌钛网电极;8、数据采集系统;9、电流采集盒;10、位移采集盒;11、拍照装置;12、位移传感器13、电压测孔;14、量筒;15、集液导管及开关;16、导线。

    具体实施方式

    下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。

    参照图1所示,为本发明的软粘土电渗固结多物理场耦合分析方法的实施例,包括如下步骤:

    建立土体的多物理场方程组;

    将上述多物理场方程组的方程分别改写成弱形式;

    对上述弱形式进行离散,获得电渗固结耦合分析的有限元控制方程组并求解。

    土体电渗固结属于应力场、渗流场、电场等多物理场耦合问题,电渗固结过程涉及biot固结理论、水流连续原理和电荷守恒原理,因此,本发明中将上述多个物理场建立成方程组,实现对土体电渗固结的全耦合分析。为对多物理场方程组求解,本实施例中采用将多物理场方程组中的各方程分别改写成弱形式,而后进行离散,最终分析获得软粘土电渗固结过程中超静孔隙水压力分布、固结沉降性状,以便指导软粘土室内电渗固结模型试验的设计。

    为描述土体内部超静孔隙水压力时空发展规律,本实施例中,所述多物理场方程组是在二维平面条件下建立的。同时,所述土体的骨架采用非弹性本构模型,具体表现为:

    其中,e为弹性模量。

    本实施例中,所述多物理场方程组包括应力场的应力平衡方程、渗流场的孔隙水流动连续方程以及电场的电场控制方程。

    在平面应变条件下,应力平衡方程能够由biot固结理论和有效应力原理得到:

    孔隙水流动连续方程表现为:

    其中,kw为渗透系数、kek为电渗透系数。

    电场控制方程表现为:

    其中,kσe为电导率。

    方程(1)、(2)和(3)组成多物理场方程组,本实施例中,其存在边界条件,包括dirichlet边界条件,即指定边界孔隙水压力、位移,以及neumann边界条件,即指定边界处流量。

    本实施例中采用全耦合的方法对具有边值条件的方程组(1)(2)(3)进行求解,首先分别将(1)(2)(3)改写成弱形式,获得方程(4)(5)(6):

    进一步的,本实施例中采用伽辽金方法对上述弱形式进行离散,得到电渗固结有限元分析控制方程组,对方程组予以实施,实现应力场、渗流场、电场多物理场全耦合分析,获得电渗固结有限元分析控制方程组,在matlab上编写程序,进行多物理场耦合分析的实施。具体的分析步骤如下:

    建立分析模型几何形状并导入有限元分析软件,由于本实施例中采用二维平面条件,因此可以在autocad中绘制几何形状。

    指定区域土体物理参数,本实施例中所述土体物理参数可以包括初始孔隙比,以及渗透系数、电渗透系数和电导率定义为初始孔隙比的函数的具体形式。

    具体的,初始孔隙比为e,

    渗透系数kw,可以表示为:

    电渗透系数kek,可以表示为:

    电导率kσe,可以表示为:

    确定应力边界条件、排水/不排水边界,本实施例中,应力边界条件、排水/不排水边界为:两侧设置横向位移约束,底部设置竖向位移约束,左右两侧还施加弹性基础层,从而能够模拟土体和箱壁之间的摩擦;阳极和底部设置为不排水边界,阴极和表面设置为排水边界。

    确定分析类行为瞬态分析,设定分析起止时间、步长。

    各参数确认完成后,通过计算程序求解结果,并进行处理,获得软粘土电渗固结过程中超静孔隙水压力分布、固结沉降性状,从而能够指导软粘土室内电渗固结模型试验设计。

    为验证本发明分析方法的可靠性,在得出有限元控制方程组的求解结果后,将求解结果分别与解析法的解及试验结果进行比较。

    在与解析法的比较中,选择计算模型为:阴极位于土柱上部,排水面,阳极位于土柱下部,不排水,阳极电势10v;计算参数为:l=1m,mv=1.0×10-6pa-1,e=7.4×105pa,kw=2.0×10-8m/s,kek=2.0×10-9m2/vs。超静孔隙水压力的esrig解析解和本发明的计算值对比如图1所示,表明本发明的电渗固结数值分析程序是可靠的。

    在于试验结果的比较中,选择试验装置为图2所示的有机玻璃电渗槽,包括直流电源1、土样2、阳极腔室3、阴极腔室4、多孔排水板5、土工布6、镀钌钛网电极7、数据采集系统8、电流采集盒9、位移采集盒10、拍照装置11、位移传感器12、电压测孔13、量筒14、集液导管及开关15和导线16,在电渗槽左右两侧边底部分别设有排水孔,以排出电渗过程中的水。此时本发明的计算模型选择为:两侧设置横向位移约束,底部设置竖向位移约束;阳极和底部设置为不排水边界,阴极和表面设置为排水边界,阳极电压按照试验分别设置为39v、26v、13v;计算参数:kw=4.07×10-8e0.188m/s,

    分别对39v、26v、13v电渗固结试验进行了数值模拟分析,得到如图3(a)的模型表面固结沉降分布,从图中可以看出,模型表面沉降呈现出阳极大、阴极小的“勺子”形状,表面沉降最大值并非发生在阳极处,而是发生在距离阳极5mm位置处,这和胡黎明、吴辉的试验观测结果比较一致,表明本试验结果的准确。

    参照图3(b)所示,为阳极沉降计算值与试验值的对比,从图中可以看出,39v、26v、13v电渗固结沉降计算值发展趋势和试验结果比较吻合,说明本发明的多物理场耦合分析结果合理。

    参照图4(a)和4(b)所示,为由本发明分析结果得出的阳极位置电渗固结超静孔隙水压力分布及时空发展规律。从图4(a)可以看出,阳极超静孔隙水压力都是负孔压,自上往下呈现曲线分布,最大值出现在阳极底部;随着阳极电势的增加,阳极底部负孔压呈现线性增长趋势。从图4(b)可以看出:在39v、26v、13v电势作用下,归一化阳极超静孔隙水压力时空发展关系一致;在电渗固结过程中,阳极位置超静孔隙水压力都为负孔压,随着时间推移负孔压逐渐增长,土体内部水分逐渐排出,固结度逐渐增加。

    参照图5(a)和4(b)所示,为由本发明分析结果得出的阳极位置表面沉降及平均固结度随时间的变化情况。从图5(a)可以看出:随着阳极电势的增加,阳极沉降量逐渐增大,沉降量和电势呈线性关系。从图5(b)可以看出:在39v、26v、13v电势作用下,阳极位置平均固结度发展一致。

    以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。


    技术特征:

    1.软粘土电渗固结多物理场耦合分析方法,其特征在于,包括如下步骤:

    建立土体的多物理场方程组;

    将上述多物理场方程组中的各方程分别改写成弱形式;

    对上述弱形式进行离散,获得电渗固结耦合分析的有限元控制方程组并求解。

    2.如权利要求1所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述多物理场方程组包括应力场的应力平衡方程、渗流场的孔隙水流动连续方程以及电场的电场控制方程。

    3.如权利要求2所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述应力平衡方程由biot固结理论和有效应力原理得到。

    4.如权利要求1所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,采用伽辽金方法对所述弱形式进行离散,获得电渗固结有限元分析控制方程组,在matlab上编写程序,进行多物理场耦合分析。

    5.如权利要求4所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述多物理场耦合分析的步骤包括:

    建立分析模型几何形状并导入有限元分析软件;指定区域土体物理参数;确定应力边界条件、排水/不排水边界;确定分析类行为瞬态分析,设定分析起止时间、步长;求解。

    6.如权利要求5所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述土体物理参数包括初始孔隙比,以及渗透系数、电渗透系数和电导率定义为初始孔隙比的函数的具体形式。

    7.如权利要求5所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述应力边界条件、排水/不排水边界为:两侧设置横向位移约束,底部设置竖向位移约束,左右两侧还施加弹性基础层;阳极和底部设置为不排水边界,阴极和表面设置为排水边界。

    8.如权利要求1所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述多物理场方程组是在二维平面条件下建立的。

    9.如权利要求1所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述多物理场方程组存在边界条件,包括dirichlet边界条件,即指定边界孔隙水压力、位移,以及neumann边界条件,即指定边界处流量。

    10.如权利要求1所述的软粘土电渗固结多物理场耦合分析方法,其特征在于,所述土体的骨架采用非弹性本构模型。

    技术总结
    本发明公开了软粘土电渗固结多物理场耦合分析方法,包括如下步骤:建立土体的多物理场方程组;将上述多物理场方程组中的各方程分别改写成弱形式;对上述弱形式进行离散,获得电渗固结耦合分析的有限元控制方程组并求解。本发明充分考虑各物理场耦合特征,得到更可靠的数值结果和分析结果,从而能够有效指导室内电渗固结模型试验设计。

    技术研发人员:周太全;沈美兰;宋贝贝;王鹏程
    受保护的技术使用者:江南大学
    技术研发日:2020.11.30
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-20359.html

    最新回复(0)