本发明涉及半导体器件技术领域,具体涉及一种基于lstm的点胶图形智能生成方法。
背景技术:
自动贴片是决定电子封装产品性能及精度的关键工序,而自动贴片的结果是由自动点胶和贴片的多个参数共同决定的,其中点胶图形的确定是影响自动贴片效果的关键步骤。传统工艺流程中,工程师会根据以往经验选取点胶图形,随后进行大量工艺试验,根据贴装效果不断调整点胶图形,同一芯片往往需要迭代多次,造成大量的时间成本和材料成本浪费,工程师也没有建立起芯片固有特征与点胶图形之间的关系。华中科技大学用机理法建模并结合有限元方法近似点胶过程模型,但其并非精确模型,且无法得出点胶图形与芯片特征之间的关系。利用人工智能的思想进行点胶图形的智能生成是解决上述问题的一种有效途径,但目前国内没有团队将人工智能算法引入电子封装的参数决策系统。
技术实现要素:
本发明是为了解决未能将人工智能算法引入电子封装的参数决策系统的问题,提供一种电子封装领域点胶图形的智能生成方法。该方法将人工智能领域的循环神经网络rnn中的长短时记忆单元lstm与点胶图形生成过程相结合,为带有时间序列的参数生成提供了可行方案,从而克服了单纯依靠工艺试验进行点胶图形选取和使用前馈神经网络生成图形所带来的时间信息丢失问题。
本发明提供一种基于lstm的点胶图形智能生成方法,包括如下步骤:
s1、数据准备:收集自动贴装数据的输入特征和输出特征形成数据集,将数据集划分为训练集、验证集和测试集;
s2、建立输入特征属性向量:对输入特征进行预处理得到输入特征属性向量;
s3、建立输出特征属性向量:对输出特征进行预处理得到输出特征属性向量,以解决点胶线段不连续、样本坐标序列长度不同和坐标取值范围过大问题;
s4、建立lstm模型:设计lstm结构及超参数建立lstm模型;
s5、训练lstm模型:设计lstm模型的损失函数和优化算法,分别使用输入特征属性向量和输出特征属性向量进行lstm模型训练,修正超参数,直至训练结束得到最终lstm模型;
s6、生成点胶图形:调用最终lstm模型,输入新产品的输入特征属性向量,生成新产品点胶图形的输出特征属性向量,并得到新产品的输出特征,生成点胶图形。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s1中输入特征包括:数值型特征、序数特征和标称特征;步骤s1中输出特征是点胶图形的坐标序列。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s1中数据集的样本总数不少于1000组,训练集、验证集和测试集的比例依次为:70%,20%,10%。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s2包括:
s21、定义数值型特征,并将数值型特征进行归一化处理,得到数值型特征向量;
s22、将序数特征进行编码,得到序数特征向量;
s23、将标称特征进行one-hot编码,得到标称特征向量;one-hot编码又称“独热编码”。其实就是用n位状态寄存器编码n个状态,每个状态都有独立的寄存器位,且这些寄存器位中只有一位有效,说白了就是只能有一个状态;
s24、将数值型特征向量、序数特征向量和标称特征向量组合,得到输入特征属性向量。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s21中数值型特征为芯片尺寸和针头尺寸,步骤s22中序数特征为贴装表面粗糙度,步骤s23中标称特征为贴片胶体类别。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s3包括:
s31、将第三维度(二进制0/1)增加进输出特征得到三维输出特征,第三维度为针头抬起状态,解决点胶线段不连续的问题;
s32、填充三维输出特征,使所有三维输出特征长度一致;
s33、归一化三维输出特征,将取值范围缩放到[0,1],得到输出特征属性向量。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s4中,lstm结构为:输入层是向量重复层,即repeatvector层,输入层之后为两层lstm。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s4中,lstm模型的激活函数分别为双曲正切函数(即tanh函数)和修正线性单元函数(即relu函数),lstm模型的每层均进行批标准化处理(即batchnormalization处理)和dropout处理(即以一定概率随机去掉部分神经元的处理)。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s5中,损失函数为均方误差函数(即mse函数)。
本发明所述的一种基于lstm的点胶图形智能生成方法,作为优选方式,步骤s5中,优化算法为rmsprop(全称是rootmeansquareprop算法)。
本发明具有以下优点:
(1)缩短试验周期,节约工艺试验所需物料成本。对于需要自动点胶的产品,不再需要盲目地选择点胶图形和进行大量的工艺试验。只需输入特征属性值,即可给出一组点胶图形坐标序列并生成二维点胶图形。每种芯片点胶图形平均确认时间从10小时缩短至10分钟,工艺迭代次数由20次缩短为不超过4次。
(2)采用lstm网络,循环共享权重系数,与传统的前馈神经网络相比,大幅减少训练参数,且对时间序列数据之间的前后关系建立起了联系。
(3)将人工智能算法用于电子封装领域的自动点胶图形生成,建立了从芯片固有特征属性到点胶序列的模型。工程师经验以人工智能算法模型的形式保存了下来,工艺数据得到了充分的挖掘和利用。
附图说明
图1为一种基于lstm的点胶图形智能生成方法实施例1-3流程图;
图2为一种基于lstm的点胶图形智能生成方法的循环神经网络rnn的拓扑示意图;
图3为一种基于lstm的点胶图形智能生成方法的长短时记忆单元lstm的示意图;
图4为一种基于lstm的点胶图形智能生成方法步骤s2流程图;
图5为一种基于lstm的点胶图形智能生成方法步骤s3流程图;
图6为一种基于lstm的点胶图形智能生成方法实施例3最终生成的点胶图形。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1
如图1所示,一种基于lstm的点胶图形智能生成方法,包括如下步骤:
s1、数据准备:收集自动贴装数据的输入特征和输出特征形成数据集,将数据集划分为训练集、验证集和测试集;
s2、建立输入特征属性向量:对输入特征进行预处理得到输入特征属性向量;
s3、建立输出特征属性向量:对输出特征进行预处理得到输出特征属性向量;
s4、建立lstm模型:如图2-3所示,设计lstm结构及超参数建立lstm模型;
s5、训练lstm模型:设计lstm模型的损失函数和优化算法,分别使用输入特征属性向量和输出特征属性向量进行lstm模型训练,修正超参数,直至训练结束得到最终lstm模型;
s6、生成点胶图形:调用最终lstm模型,输入新产品的输入特征属性向量,生成新产品点胶图形的输出特征属性向量,并得到新产品的输出特征,生成点胶图形。
实施例2
如图1所示,一种基于lstm的点胶图形智能生成方法,包括如下步骤:
s1、数据准备:收集自动贴装数据的输入特征和输出特征形成数据集,将数据集划分为训练集、验证集和测试集;输入特征包括:数值型特征、序数特征和标称特征;输出特征是点胶图形的坐标序列;数据集的样本总数不少于1000组,训练集、验证集和测试集的比例依次为:70%,20%,10%;
s2、建立输入特征属性向量:如图4所示,对输入特征进行预处理得到输入特征属性向量;
s21、定义数值型特征,并将数值型特征进行归一化处理,得到数值型特征向量;数值型特征为芯片尺寸和针头尺寸;
s22、将序数特征进行编码,得到序数特征向量;序数特征为贴装表面粗糙度;
s23、将标称特征进行one-hot编码,得到标称特征向量;标称特征为贴片胶体类别;
s24、将数值型特征向量、序数特征向量和标称特征向量组合,得到输入特征属性向量;
s3、建立输出特征属性向量:如图5所示,对输出特征进行预处理得到输出特征属性向量;
s31、将第三维度增加进输出特征得到三维输出特征,第三维度为针头抬起状态;
s32、填充三维输出特征,使所有三维输出特征长度一致;
s33、归一化三维输出特征,得到输出特征属性向量;
s4、建立lstm模型:如图2-3所示,设计lstm结构及超参数建立lstm模型;输入层是向量重复层,输入层之后为两层lstm;lstm模型的激活函数分别为双曲正切函数和修正线性单元函数,lstm模型的每层均进行批标准化处理和dropout处理;
s5、训练lstm模型:设计lstm模型的损失函数和优化算法,分别使用输入特征属性向量和输出特征属性向量进行lstm模型训练,修正超参数,直至训练结束得到最终lstm模型;损失函数为均方误差函数;优化算法为rmsprop;
s6、生成点胶图形:调用最终lstm模型,输入新产品的输入特征属性向量,生成新产品点胶图形的输出特征属性向量,并得到新产品的输出特征,生成点胶图形。
实施例3
如图1所示,针对一组现有的自动贴装工艺参数以及对应的点胶贴片效果(根据gjb548b评价标准给出),数据集样本量为1000,设计一种基于lstm的点胶图形智能生成方法,包括如下步骤:
s1、数据准备:收集自动贴装数据的输入特征和输出特征形成数据集,将数据集划分为训练集、验证集和测试集;输入特征包括:数值型特征、序数特征和标称特征;输出特征是点胶图形的坐标序列;数据集的样本总数不少于1000组,训练集、验证集和测试集的比例依次为:70%,20%,10%;
s2、建立输入特征属性向量:如图4所示,对输入特征进行预处理得到输入特征属性向量;
s21、定义数值型特征,并将数值型特征进行归一化处理,得到数值型特征向量;数值型特征包括芯片长度(4mm)、芯片宽度(2.5mm)、芯片高度(0.3mm)、针头内径(0.1mm),归一化到区间[0,1];
s22、将序数特征进行编码,得到序数特征向量;序数特征为贴装表面粗糙度;对序数属性贴装表面粗糙度进行编码,分别为{0,1,2};
s23、将标称特征进行one-hot编码,得到标称特征向量;标称特征为贴片胶体类别;
s24、将数值型特征向量、序数特征向量和标称特征向量组合,得到一个输入特征属性向量;[4,2.5,0.3,0.16,1,1,0]t,共7维。
s3、建立输出特征属性向量:如图5所示,对输出特征进行预处理得到输出特征属性向量;
s31、将第三维度增加进输出特征得到三维输出特征,第三维度为针头抬起状态;用二进制位0/1表示,针头在某一坐标抬起,设置为1,否则为0;
s32、填充三维输出特征,使所有三维输出特征长度一致;具体为用padding操作将所有样本的坐标序列填充为最大长度,使所有样本的序列长度一致;
s33、归一化三维输出特征,得到输出特征属性向量,具体方法如步骤s21;
s4、建立lstm模型:如图2-3所示,设计lstm结构及超参数建立lstm模型;输入层是向量重复层(即repeatvector层),接着进行批标准化处理(即batchnormalization)处理,随后是一个lstm层,输出设定为9维,激活函数为双曲正切函数(即tanh函数),并加入dropout,接着进行batchnormalization,随后再添加一个lstm层,输出为3维,激活函数为修正线性单元函数(即relu函数),并加入dropout(即以一定概率随机去掉部分神经元的处理);
s5、训练lstm模型:设计lstm模型的损失函数和优化算法,分别使用输入特征属性向量和输出特征属性向量进行lstm模型训练,修正超参数,直至训练结束得到最终lstm模型;具体方法为:损失函数为均方误差函数(即mse函数);优化算法为rmsprop(全称是rootmeansquareprop算法);超参数学习速率η设为0.01,衰减速率β设为0.9;首先将迭代次数epochs设为100,保存模型。随后将优化器改为adam,用earlystopping策略寻找最优模型,直到训练结束并保存模型;
s6、生成点胶图形:调用最终lstm模型,输入新产品的输入特征属性向量[4,2.5,0.3,0.16,1,1,0]t,生成新产品点胶图形的输出特征属性向量,并得到新产品的输出特征,生成预测的点胶图形,如图6所示,点胶图形坐标序列为:(0,1),(5,5),(-5,-5),(0,0),(5,-5),(-5,5),(0,0),(2,0),(-2,0),(0,0),(0,2),(0,-2),(0,0),并展示点胶图形。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
1.一种基于lstm的点胶图形智能生成方法,其特征在于:包括如下步骤:
s1、数据准备:收集自动贴装数据的输入特征和输出特征形成数据集,将所述数据集划分为训练集、验证集和测试集;
s2、建立输入特征属性向量:对所述输入特征进行预处理得到输入特征属性向量;
s3、建立输出特征属性向量:对所述输出特征进行预处理得到输出特征属性向量;
s4、建立lstm模型:设计lstm结构及超参数建立lstm模型;
s5、训练lstm模型:设计所述lstm模型的损失函数和优化算法,分别使用所述输入特征属性向量和所述输出特征属性向量进行lstm模型训练,修正所述超参数,直至训练结束得到最终lstm模型;
s6、生成点胶图形:调用所述最终lstm模型,输入新产品的所述输入特征属性向量,生成新产品点胶图形的所述输出特征属性向量,并得到所述新产品的所述输出特征,生成点胶图形。
2.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s1中所述输入特征包括:数值型特征、序数特征和标称特征;步骤s1中所述输出特征是所述点胶图形的坐标序列。
3.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s1中所述数据集的样本总数不少于1000组,所述训练集、所述验证集和所述测试集的比例依次为:70%,20%,10%。
4.根据权利要求2所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s2包括:
s21、定义所述数值型特征,并将所述数值型特征进行归一化处理,得到数值型特征向量;
s22、将所述序数特征进行编码,得到序数特征向量;
s23、将所述标称特征进行one-hot编码,得到标称特征向量;
s24、将所述数值型特征向量、所述序数特征向量和所述标称特征向量组合,得到所述输入特征属性向量。
5.根据权利要求4所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s21中所述数值型特征为芯片尺寸和针头尺寸,步骤s22中所述序数特征为贴装表面粗糙度,步骤s23中所述标称特征为贴片胶体类别。
6.根据权利要求2所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s3包括:
s31、将第三维度增加进所述输出特征得到三维输出特征,所述第三维度为所述针头抬起状态;
s32、填充所述三维输出特征,使所有所述三维输出特征长度一致;
s33、归一化所述三维输出特征,得到所述输出特征属性向量。
7.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s4中,所述lstm结构为:输入层是向量重复层,所述输入层之后为两层lstm。
8.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s4中,所述lstm模型的激活函数分别为双曲正切函数和修正线性单元函数,所述lstm模型的每层均进行批标准化处理和dropout处理。
9.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s5中,所述损失函数为均方误差函数。
10.根据权利要求1所述的一种基于lstm的点胶图形智能生成方法,其特征在于:步骤s5中,所述优化算法为rmsprop。
技术总结