一种N型聚合物半导体材料、制备方法及应用与流程

    专利2022-07-08  104


    本发明涉及一种n型聚合物半导体材料、制备方法及应用,属于有机聚合物半导体材料领域。



    背景技术:

    低温溶液法制备有机光电子器件是目前科研界和工业界关注的热点,而决定目前有机光电子器件产品化商业化的最大障碍是产品的性能和成本,由于目前有机光电子器件的性能主要取决于所采用的有机分子的性能,所以开发新型的有机分子材料将是解决未来能量储存,光电转换,开发高效廉价半导体器件等关键(参见文献:y.-j.cheng,s.-h.yang,c.-s.hsu,chem.rev.2009,109,5868)。

    在过去的十多年中,高性能有机半导体材料的研发取得了长足的发展。在有机太阳能电池,有机发光二极管和有机场效应晶体管中也取得了优异的性能(参见文献:j.h.burroughes,d.d.c.bradley,a.r.brown,r.n.marks,k.mackay,r.f.friend,p.l.burn,a.b.holmes,nature.1990,347,539;m.a.baldo,d.f.o’brien,a.shoustikow,s.sibley,m.e.thompson,s.r.forrest,nature1998,395,151.),但是与商业化的性能门槛相比还有不少的距离,但是有机分子材料具有结构可设计性,性能可控,能进行低温溶液法制备,可研发柔性半透明的大面积器件,这些独特的优势是的有机光电子器件具有广阔的研发前景,以有机聚合物太阳能电池为例,2000年诺贝尔化学奖得主alanj.heeger等(参见文献:g.yu,j.gao,j.c.hummelen,f.wudl,a.j.heeger,science1995,270,1789)首次报道通过溶液旋涂方法制备得到以聚(3-己基)噻吩和富勒烯衍生物(pcbm)为光敏层材料的高效聚合物太阳能电池器件以来,有机聚合物太阳能电池在过去的十多年中光电转换效率已经从最初的1%提高的现在的12%(参见文献:z.he,b.xiao,f.liu,h.wu,y.yang,s.xiao.c.wang,t.p.russell,y.cao,nat.photonics2015,9,174),达到了商业化10%的要求,得益于新型有机半导体材料的研发和器件制备工艺的优化,有机太阳能电池取得了长足的发展,但是目前此类电池还存在能量损失高,目前的有机材料介电常数较低,有机太阳能电池制备时形貌不可控等不足,这使得后期的新材料研发有了明确的方向。

    与聚合物分子相比,基于聚合物-聚合物混合膜的有机光电具有更好的热稳定性和机械稳定性。对被广泛研究的典型n型聚合物p(ndi2od-t2)(也称为n2200)的研究表明,如何通过控制供体和受体聚合物之间的相分离来实现器件中理想的激子分离、电荷传输和整体光伏性能(参见文献:e.zhou,j.cong,k.hashimoto,k.tajima,controlofmiscibilityandaggregationviathematerialdesignandcoatingprocessforhigh-performancepolymerblendsolarcells,advancedmaterials,25(2013)6991-6996)。kim等人首次报道了以萘二酰亚胺-噻吩为基础的d-a聚合物,可提高太阳能电池的功率转换效率,接近7%(参见文献:t.kim,j.h.kim,t.e.kang,c.lee,h.kang,m.shin,c.wang,b.ma,u.jeong,t.s.kim,b.j.kim,flexible,highlyefficientall-polymersolarcells,naturecommunications6(2015)8547)。

    最近,现有技术通过合理选择宽带隙(光响应小于700nm)聚合物pt8报道了8%的转换效率(参见文献:b.li,q.zhang,g.dai,h.fan,x.yuan,y.xu,b.cohen-kleinstein,j.yuan,w.ma,understandingtheimpactofside-chainsonphotovoltaicperformanceinefficientall-polymersolarcells,journalofmaterialschemistryc7(2019)12641-12649)。



    技术实现要素:

    本发明针对现有技术存在的不足,提出一种具有新型结构、宽光学带隙的n型聚合物有机半导体材料及其制备方法,将其应用于有机半导体光电器件,能有效提升器件的性能,进一步提高宽带隙全聚合物太阳能电池的转换效率。

    实现本发明目的的技术方案是提供一种n型聚合物半导体材料,它的结构式为:

    其中:d1和d2为给体单元,a为受体单元;

    d1代表具有给电子能力的如下单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;d1和d2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    所述的d2与d1相同,或d2为d1分子上的氢原子被氟或氯取代;

    a代表具有拉电子能力的如下单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;a的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    x为给体单元d2相对于受体单元a的摩尔比,x为0~1之间的数;

    n为聚合物的重复单元个数,n为5~500之间的自然数。

    所述的d1为如下单元中的一种:

    其中,x为氧、硫、硒元素中的一种。

    所述的a为如下单元中的一种:

    其中,x为氧、硫、硒元素中的一种。

    所述的d1为:

    所述的d2为如下单元中的一种:

    本发明所述的一种n型聚合物半导体材料,其一个优化方案是结构式为:

    本发明技术方案包括如上所述的n型聚合物半导体材料的制备方法,以三(二亚苄基丙酮)二钯为催化剂,三(邻甲苯)膦为配体,无水甲苯和二甲基甲酰胺为反应溶剂,将受体单元a、给体单元d1、d2,按摩尔比1:1-x:x,进行stille交叉偶联反应,x为给体单元d2相对于受体单元a的摩尔比,x为0~1之间的数,制备得到n型聚合物溶液。

    本发明技术方案还包括如上所述的n型聚合物半导体材料的应用,将所述的n型聚合物半导体材料与给体聚合物材料溶解于氯仿溶剂中,得到混合溶液,再采用溶液旋涂法,制备体相异质结聚合物太阳能电池。

    所述的给体聚合物材料可以选择pt8。

    一个优选的方案是:n型聚合物半导体材料与给体聚合物材料以重量比1:1.3共混,溶解于氯仿溶剂中,混合溶液的总浓度为12mg/ml。

    与现有技术相比,本发明的有益效果在于:

    1.本发明提供的聚合物在经典的d-a型结构的基础上,通过对给体聚合物材料进行改性,引入氟或氯原子基团来调控给受体聚合物共混物的分子间作用力和排列,提升最终材料的性能,进而提升有机电子器件的性能。

    2.本发明提供的聚合物在溶液态表现出分子间作用增强,固态有序度增强,其与给体材料pt8混合制备的聚合物-聚合物共混膜有更加良好的相区结晶度,可应用于制备高效有机聚合物太阳能电池。

    3.本发明制备的n型聚合物半导体材料与受体材料溶解于溶剂中,采用溶液旋涂法制备体相异质结聚合物太阳能电池,转换效率达到9.04%,有效地提升给聚合物混合薄膜的性能,并简化了电池的制备工艺。

    附图说明

    图1是本发明实施例制备n型聚合物半导体材料f0、f10、f20、f50、f100的合成路线示意图;

    图2是本发明实施例制备的聚合物f10的氢谱核磁谱图;

    图3本发明实施例制备的聚合物f10在不同温度中的紫外-可见吸收光谱图;

    图4是本发明实施例制备的聚合物f0,f10,f20,f50的平面外和平面内的二维giwaxs图;

    图5是本发明实施例提供的聚合物太阳能电池器件结构示意图;

    图6是本发明实施例以聚合物f0、f10和pt8共混薄膜为光敏层制备的太阳能电池中电流-电压特性图;

    图7是本发明实施例以聚合物f0和f10和pt8共混为光敏层制备的太阳能电池中外量子效率图;

    图8是本发明实施例制备的聚合物f0、f10、f20、f50与pt8共混薄膜的原子力显微镜形貌图;

    图9是发明实例制备的聚合物f0、f10的储存稳定性能曲线图。

    图中,1.玻璃层;2.导电玻璃层;3.电子传输层;4.光敏化层;5.空穴传输层;6.电极层。

    具体实施方式

    下面结合附图和实施例对本发明技术方案作进一步的说明。

    本实施方案所用的原料为已知化合物,可在市场上购得,或可用本领域已知的方法合成。

    实施例1

    本实施例提供一系列n型聚合物半导体材料。

    原料:萘二酰二溴化物(受体a)、三甲基锡双噻吩(给体d1)和二氟噻吩(给体d2),它们的结构式如下:

    参见附图1,它是本实施例提供的一种制备n型聚合物半导体材料f0、f10、f20、f50、f100的合成路线图;具体步骤如下:

    取0.3mmol萘二亚胺二溴化物、0.3mmol三甲基锡双噻吩和二氟噻吩的混合物(三甲基锡双噻吩与二氟噻吩的摩尔比分别为1:0、9:1、4:1、1:1、0:1,对应记作f0、f10、f20、f50和f100)加入50毫升反应瓶中,加入催化剂三(二亚苄基丙酮)二钯0.01g,配体三(邻甲苯)膦0.02g,以5ml无水甲苯和0.5ml二甲基甲酰胺为反应溶剂,封闭后抽真空,逐渐升温至110℃,搅拌反应4天。

    将混合物冷却并倒入80毫升的丙酮中。为了纯化这些聚合物,沉淀被收集并在索氏提取器中与丙酮(12小时)和己烷(12小时)分步洗涤,以去除催化剂、配体和低聚物。最后用氯仿萃取,浓缩,丙酮沉淀。对于f100,直接收集索氏管中的残留。收集沉淀,80℃真空过夜干燥。分别得到产物,其结构式为:

    f0为无氟聚合物;f10、f20、f50和f100分别采用二氟噻吩单体(d2)与萘二酰二溴化物单体(a)的摩尔比为10%、20%、50%、100%制备的n型聚合物,n为5~500之间的自然数。

    f0:获得深紫色固体(130mg),gpc:mn=46.5kg/mol,pdi=2.5。

    f10:得到深紫色固体纤维(135mg),gpc:mn=42.1g/mol,pdi=2.8。

    f20:得到深紫色纤维片状固体(128mg),gpc:mn=40.3g/mol,pdi=2.7。

    f50:获得暗片状固体(133mg),gpc:mn=38.7g/mol,pdi=2.9。

    f100:获得深紫色固体(140mg)。

    参见附图2,它是本实施例制备的聚合物中f10的氢谱核磁谱图。

    参见附图3,为本实施例制备的聚合物f10在不同温度下的薄膜紫外可见吸收光谱,本发明制备的f10聚合物材料在室温下对600nm波长的可见光吸收能力比高温情况下强。

    参见附图4,为本实施例制备的聚合物中f0,f10,f20,f50的平面外(图a)和平面内(图b)的二维giwaxs图,对应材料的聚集性性质调控和结晶性变化。

    参见附图5,以本发明为给体材料的聚合物太阳能电池器件,可包括玻璃层1和导电玻璃2(ito)组成的衬底层,电子传输层3(pfn-br),光敏化层4(pt8:氟化聚合物),空穴传输层5(pedot:pss)和电极层6(al)。

    聚合物太阳能电池器件可按本领域已知方法制作,如按参考文献(adv.funct.mater.2013,23,885.)公开的方法制作。具体方法为:导电玻璃(ito)依次用洗涤剂、异丙醇、丙酮各超声清洗20分钟,将经过清洗的ito进行臭氧处理15~20分钟,旋涂pedot:pss薄膜(转速4500转每分钟,时间40秒),旋涂pt8:氟化聚合物的氯仿溶液(重量比1/1.3,总浓度12毫克每毫升),转速2000转每分钟,旋涂60秒,120度退火10分钟,然后转移到手套箱中,pfn-br的甲醇溶液(0.5mg/ml)在5000转每分钟下旋转涂覆到全聚合物活性层的顶部,持续40秒,然后在真空度1.0×10−6mbar下依次蒸镀100纳米厚的al(速度2埃每秒),用该方法制得如图5所示的器件,各种器件的结构如下:

    器件1:

    ito/pedot:pss/pt8:f0/fpn-br/al;

    器件2:

    ito/pedot:pss/pt8:f10/fpn-br/al;

    器件3:

    ito/pedot:pss/pt8:f20/fpn-br/al;

    器件4:

    ito/pedot:pss/pt8:f50/fpn-br/al;

    器件的电流-电压特性是在标准太阳光照射下(am1.5g,100mw/cm2,newport,classaaasolarsimulator,94023a-u),由带有校正过的硅光电二极管的keithley光源测量系统(keithley2400sourcemeter)完成的,外量子效率由经过认证的卓立汉光solarcellscan100测量的,所有测量均在氮气中完成。器件的性能数据参见下表1。

    表1

    参见附图6,它是本实施例提供的器件1、2的电流-电压特性曲线图。

    参见附图7,它是本实施例提供的器件1、2的外量子效率图。

    参见附图8,它是本实施例提供的聚合物与pt8共混薄膜的原子力显微镜形貌图;其中,图a、b、c、d分别对应为聚合物f0、f10、f20和f50。

    参见附图9,它是本实施例提供的聚合物f0、f10的储存稳定性图。

    结果表明,本发明制备的n型聚合物材料f10与pt8共混物是一种优异的有机光电材料,这种新型的聚合物材料具有广阔的前景,能进一步的提升有机半导体材料的性能。


    技术特征:

    1.一种n型聚合物半导体材料,其特征在于它的结构式为:

    其中:d1和d2为给体单元,a为受体单元;

    d1代表具有给电子能力的如下单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;d1和d2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    所述的d2与d1相同,或d2为d1分子上的氢原子被氟或氯取代;

    a代表具有拉电子能力的如下单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;a的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    x为给体单元d2相对于受体单元a的摩尔比,x为0~1之间的数;

    n为聚合物的重复单元个数,n为5~500之间的自然数。

    2.根据权利要求1所述的一种n型聚合物半导体材料,其特征在于:所述的d1为如下单元中的一种:

    其中,x为氧、硫、硒元素中的一种。

    3.根据权利要求1所述的一种n型聚合物半导体材料,其特征在于:所述的a为如下单元中的一种:

    其中,x为氧、硫、硒元素中的一种。

    4.根据权利要求1或2所述的一种n型聚合物半导体材料,其特征在于:所述的d1为:

    5.根据权利要求1所述的一种n型聚合物半导体材料,其特征在于:所述的d2为如下单元中的一种:

    6.根据权利要求1所述的一种n型聚合物半导体材料,其特征在于它的结构式为:

    7.一种如权利要求1所述的n型聚合物半导体材料的制备方法,其特征在于:以三(二亚苄基丙酮)二钯为催化剂,三(邻甲苯)膦为配体,无水甲苯和二甲基甲酰胺为反应溶剂,将受体单元a、给体单元d1、d2,按摩尔比1:1-x:x,进行stille交叉偶联反应,x为给体单元d2相对于受体单元a的摩尔比,x为0~1之间的数,制备得到n型聚合物溶液;

    所述的d1代表具有给电子能力的如下单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;d1和d2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    所述的d2与d1相同,或d2为d1分子上的氢原子被氟或氯取代;

    所述的a代表具有拉电子能力的如下述单元中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;a的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;

    所述的n型聚合物的重复单元个数为5~500。

    8.如权利要求1所述的一种n型聚合物半导体材料的应用,其特征在于:将所述的n型聚合物半导体材料与给体聚合物材料溶解于氯仿溶剂中,得到混合溶液,再采用溶液旋涂法,制备体相异质结聚合物太阳能电池。

    9.根据权利要求8所述的一种n型聚合物半导体材料的应用,其特征在于:所述的给体聚合物材料为pt8。

    10.根据权利要求8或9所述的一种n型聚合物半导体材料的应用,其特征在于:n型聚合物半导体材料与给体聚合物材料以重量比1:1.3共混,溶解于氯仿溶剂中,混合溶液的总浓度为12mg/ml。

    技术总结
    本发明公开了一种N型聚合物半导体材料、制备方法及应用,属于有机聚合物半导体材料领域。本发明提供的聚合物在经典的D‑A型结构的基础上,通过引入氟或氯原子基团对给体材料进行改性,提高一种新型结构的聚合物半导体材料,它具有分子间排列有序性好,光学带隙宽的特征。将本发明提供的N型聚合物半导体材料与P型材料PT8共混,得到的聚合物‑聚合物混合膜应用于有机聚合物太阳能电池,能有效提升共轭半导体聚合物的性能,采用氯仿作为加工溶剂,其光电转换效率达到9.04%,制备得到高性能太阳能电池。

    技术研发人员:冯逸丰;袁建宇;李斌;袁鑫
    受保护的技术使用者:苏州大学
    技术研发日:2020.12.02
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-20048.html

    最新回复(0)