本发明属于水凝胶薄膜技术领域,尤其涉及一种石墨烯结构色薄膜的制备方法及应用。
背景技术:
具有刺激响应性、保水性和生物相容性的水凝胶引起了广泛的关注。其中,导电水凝胶由于其具有优异电性能,可调节的导电传感通道以及与某些天然组织相似的结构等优异性质,导电水凝胶成为了电化学传感器、神经电极、人造肌肉、电子皮肤等领域有前途的候选材料。导电水凝胶通常是通过将电颗粒(例如碳纳米管,金属颗粒或石墨材料)直接引入聚合物基材中来制备的。其中,石墨烯材料由于具有生物相容性、表面积大、高导热率和出色的机械柔韧性等优异特性,吸引了大量的关注。然而,由于石墨烯的天然疏水性,其在水性介质中易于聚集和分散较差,限制了其应用。为了克服这个困难,还原氧化石墨烯应运而生,还原氧化石墨烯是石墨烯常见的衍生物,其恢复了sp2杂化碳体系,具有优异的导电性,是柔性电子领域中更理想的材料。
石墨烯水凝胶由于其具有近红外响应性和导电性两方面优势,其可以匹配人体的皮肤运动,检测各种生理信号,例如关节的弯曲、声带和脉冲振动,在医疗设备中引起了极大的关注。尽管基于石墨烯水凝胶已经取得了许多进展,但这些石墨烯水凝胶电子设备仍面临缺乏数据可视化的严峻挑战,从而使其在具有单个电信号输入或输出的复杂生物环境中不可靠。因此,具有可见信号输出和温度刺激显示能力的导电膜仍然是值得期待的。
为了克服检测信号单一性的问题,结构色材料引起了科学家们广泛关注。结构色源于具有不同折射率的周期性纳米结构并导致光与这些光子结构之间相互作用而产生的。自然界中存在大量的结构色材料,受自然界启发,大量的结构色水凝胶被开发出来,并被广泛的应用于光学器件的开发、分子检测、力感测、可穿戴设备等。然而,结构色材料与石墨烯水凝胶电子设备的结合目前仍然面临的严峻的挑战。
技术实现要素:
本发明提供一种石墨烯结构色薄膜的制备方法及应用,以克服现有技术的缺陷。
为实现上述目的,本发明提供一种石墨烯结构色薄膜的制备方法,具有这样的特征:包括以下步骤:步骤一、采用模板牺牲法,利用胶体粒子和生物相容性前聚体,制备结构色反蛋白石水凝胶薄膜;步骤二、在步骤一得到的结构色反蛋白石水凝胶薄膜中灌注石墨烯水凝胶前聚体,固化得到石墨烯结构色薄膜;其中,石墨烯水凝胶前聚体是由还原氧化石墨烯溶液分散在水凝胶前聚体溶液中制成的。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,水凝胶前聚体为丙烯酰胺、聚n-异丙基丙烯酰胺或琼脂糖中的一种。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,所述还原氧化石墨烯溶液的浓度为4mg/ml,水凝胶前聚体溶液的浓度为20wt%,还原氧化石墨烯溶液与水凝胶前聚体溶液的体积比为1:3。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,步骤一中的具体方法为:利用所述胶体粒子自组装制备光子晶体正结构模板;将所述生物相容性前聚体渗透到光子晶体正结构模板中,固化形成光子晶体-水凝胶杂交体;去除光子晶体-水凝胶杂交体中的光子晶体正结构模板,得到结构色反蛋白石水凝胶薄膜。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,所述生物相容性前聚体选自聚乙二醇二丙烯酸酯、聚乙二醇、甲基丙烯酸甲酯修饰的明胶或丙烯酰胺中的一种或两种混合。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,所述胶体粒子选自二氧化硅、四氧化三铁、二氧化钛、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯酸乙酯或聚乙烯中的一种。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,去除光子晶体-水凝胶杂交体中的光子晶体正结构模板采用的方法为化学腐蚀法、物理溶解法或者高温煅烧法。
进一步,本发明提供一种石墨烯结构色薄膜的制备方法,还可以具有这样的特征:其中,步骤二中固化的方式为紫外照射或烘箱加热。
本发明还提供一种由上述制备方法制得的石墨烯结构色薄膜及其作为柔性电子材料的应用。
本发明的有益效果在于:本发明提供一种石墨烯结构色薄膜的制备方法及应用,石墨烯结构色薄膜中的结构色反蛋白石水凝胶薄膜作为支架赋予了薄膜鲜明的结构色;还原氧化石墨烯的掺入使得薄膜可以显示出优异的导电性;更重要的是,得益于还原氧化石墨烯的非凡的近红外光热转换能力,这种石墨烯结构色薄膜具有光响应特性。相对于现有技术,本发明提供的制备方法,操作简单,成本低廉,并且不需要大型监测仪器,制备的石墨烯结构色薄膜不仅可以反馈电信号,而且可以表现出颜色变化。具体优点表现为:
一、本发明提供的石墨烯结构色薄膜,不仅在薄膜的收缩和扩张时可以反馈电信号,而且结构色反蛋白石水凝胶薄膜其独特且稳定的光学传感信号在薄膜的收缩和扩张时也可以表现出颜色变化,在视觉上响应光照刺激。
二、相比其他检测方法,本发明不需要复杂的检测系统,具备直观性,对被检测系统无生理药理等方面的影响,更重要的是检测方法不受外界环境和化学试剂等因素的影响。
三、本发明制备的石墨烯结构色薄膜可用于近红外光响应的双信号传感器,当外界的环境中存在近红外光时,可以实时的反馈光学传感及电信号的监测。
附图说明
图1为石墨烯结构色薄膜制备流程图,其中i为光子晶体正结构模板,ii为向光子晶体正结构模板中填充生物相容性前聚体,并去除模板,得到结构色反蛋白石水凝胶薄膜,iii为向结构色反蛋白石水凝胶薄膜中灌注石墨烯水凝胶前聚体,得到石墨烯结构色薄膜;
图2a是光子晶体正结构模板的电镜图;
图2b是结构色反蛋白石水凝胶薄膜的电镜图;
图2c是石墨烯结构色薄膜的电镜图;
图3是石墨烯结构色薄膜用于柔性电子的实物图,其中i为石墨烯结构色薄膜粘附于手腕处,ii为近红外光照射石墨烯结构色薄膜,iii为近红外光照射后的石墨烯结构色薄膜;
图4a是石墨烯结构色薄膜在近红外照射下光谱的变化曲线;
图4b是石墨烯结构色薄膜在近红外照射下的相对电阻变化曲线。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
本发明提供一种石墨烯结构色薄膜的制备方法,制备过程如图1所示,包括以下步骤:
步骤一、采用模板牺牲法,利用胶体粒子和生物相容性前聚体,制备结构色反蛋白石水凝胶薄膜,具体方法为:
利用胶体粒子自组装制备光子晶体正结构模板。胶体粒子选自二氧化硅、四氧化三铁、二氧化钛、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯酸乙酯或聚乙烯中的一种。
将生物相容性前聚体渗透填充到光子晶体正结构模板中(具体操作为:将光子晶体正结构模板浸泡在生物相容性前聚体溶液中),固化形成光子晶体-水凝胶杂交体。生物相容性前聚体选自聚乙二醇二丙烯酸酯(pegda)、聚乙二醇(peg)、甲基丙烯酸甲酯修饰的明胶(gelma)或丙烯酰胺(aam)中的一种或两种混合。
通过化学腐蚀法、物理溶解法或者高温煅烧法去除光子晶体-水凝胶杂交体中的光子晶体正结构模板,得到结构色反蛋白石结构水凝胶薄膜。
步骤二、在步骤一得到的结构色反蛋白石结构水凝胶薄膜中灌注石墨烯水凝胶前聚体,通过紫外照射或烘箱加热的方式固化得到石墨烯结构色薄膜。其中,石墨烯水凝胶前聚体是由还原氧化石墨烯溶液分散在水凝胶前聚体溶液中制成的。水凝胶前聚体为丙烯酰胺、聚n-异丙基丙烯酰胺或琼脂糖中的一种。还原氧化石墨烯溶液的浓度为4mg/ml,水凝胶前聚体溶液的浓度为20wt%,还原氧化石墨烯溶液与水凝胶前聚体溶液的体积比为1:3。
本发明还提供该石墨烯结构色薄膜作为柔性电子材料的应用。在近红外光的环境下,由于还原氧化石墨烯具有极强的近红外光热转换能力,石墨烯结构色薄膜温度升高,从而使得结构色反蛋白石水凝胶薄膜体积收缩,引起其特征反射峰周期性变化,同时,石墨烯的导电性也随着温度的变化发生相应变化,反之离开近红外环境后,石墨烯结构色薄膜温度降低、体积相对扩张,其特征反射峰和导电性也发生相应变化。因此作为柔性电子材料,可通过观察和检测石墨烯结构色薄膜的光学变化及电学变化用于传感和检测。
实施例1
本实施例提供一种基于聚乙二醇二丙烯酸酯(pegda)的石墨烯结构色薄膜制备方法,包括以下步骤:
步骤一、pegda反蛋白石结构水凝胶薄膜的制备:
1)将粒径为250nm的二氧化硅粒子多次离心洗涤,随后所得固体分散在乙醇溶液中,配置浓度为20wt%的二氧化硅乙醇分散液;将二氧化硅乙醇分散液在玻璃片上沉积形成二氧化硅光子晶体正结构模板,电镜图如图2a所示;
2)将光子晶体正结构模板浸泡在pegda水凝胶前聚液(0.20g/ml)中2h,经过紫外固化得到光子晶体-水凝胶杂交体;
3)最后利用hf(4wt%)腐蚀光子晶体-水凝胶杂交体中的二氧化硅胶体粒子,得到pegda反蛋白石水凝胶薄膜,电镜图如图2b所示。
步骤二、石墨烯结构色薄膜的制备:
1)将4mg/ml的还原氧化石墨烯溶液分散在浓度为20wt%的丙烯酰胺单体溶液中;
2)将掺杂还原氧化石墨烯的丙烯酰胺单体溶液灌注到pegda反蛋白石水凝胶薄膜中,2h;
3)紫外光聚或烘箱加热步骤2)中的掺杂还原氧化石墨烯的丙烯酰胺单体溶液层,得到石墨烯结构色薄膜,电镜图如图2c所示。
本实施例中,二氧化硅胶体粒子也可以替换为四氧化三铁、二氧化钛、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯酸乙酯或聚乙烯;pegda也可以替换为peg、gelma或aam;丙烯酰胺单体也可以替换为聚n-异丙基丙烯酰胺或琼脂糖。
实施例2
本实施例提供一种基于甲基丙烯酸甲酯修饰的明胶(gelma)的石墨烯结构色薄膜制备方法,包括以下步骤:
步骤一、gelma反蛋白石水凝胶薄膜的制备:
1)将粒径为240nm的聚苯乙烯粒子多次离心洗涤,随后所得固体分散在乙醇溶液中,配置浓度为20wt%的聚苯乙烯乙醇分散液,将聚苯乙烯乙醇分散液在玻璃片上沉积形成聚苯乙烯光子晶体正结构模板;
2)将聚苯乙烯光子晶体正结构模板浸泡在gelma水凝胶前聚液(0.20g/ml)中2h,经过紫外固化得到光子晶体-水凝胶杂交体;
3)最后利用四氢呋喃浸泡去除光子晶体-水凝胶杂交体中的聚苯乙烯胶体粒子,得到gelma反蛋白石结构水凝胶薄膜。
步骤二、石墨烯结构色薄膜的制备:
1)将4mg/ml的还原氧化石墨烯溶液分散在浓度为20wt%的聚n-异丙基丙烯酰胺单体溶液中;
2)将掺杂还原氧化石墨烯的聚n-异丙基丙烯酰胺单体溶液灌注到gelma反蛋白石水凝胶薄膜中,2h;
3)紫外固化步骤2)中的掺杂还原氧化石墨烯的聚n-异丙基丙烯酰胺单体溶液层,得到石墨烯结构色薄膜。
实施例3
本实施例提供一种采用上述方法制备的石墨烯结构色薄膜作为柔性电子材料的应用。
将实施例1制得的基于pegda的石墨烯结构色薄膜的两端通过导电胶粘附固定在手腕处,如图3中i所示。在近红外光的照射下(如图3中ii所示),观察其结构色变化及实时检测光谱变化和导电变化,通过光谱仪检测石墨烯结构色薄膜的特征反射峰周期性变化数据,通过数字万用表对石墨烯结构色薄膜的导电性进行检测。
当该石墨烯结构色薄膜在近红外光照射后,如图3中iii所示,其结构色从红色变化到绿色,同时其反射光谱有明显的蓝移,从609nm变化到551nm(如图4a所示),这是因为石墨烯结构色薄膜在近红外光照射时,温度升高导致体积收缩,石墨烯结构色薄膜的内部晶格会随着薄膜体积的收缩和扩张产生体积和角度的变化。根据布拉格衍射公式:λ=1.633d(naverage2-cos2θ)1/2(d值为衍射平面间的距离,θ布拉格掠射角),当石墨烯结构色薄膜随着光照,其体积和内部纳米结构发生变化时,d值和θ也会发生变化,因此,石墨烯结构色薄膜的特征反射峰也会发生变化。另外,该石墨烯结构色薄膜具有良好的导电响应的特征,如图4b所示。
1.一种石墨烯结构色薄膜的制备方法,其特征在于:
包括以下步骤:
步骤一、采用模板牺牲法,利用胶体粒子和生物相容性前聚体,制备结构色反蛋白石水凝胶薄膜;
步骤二、在步骤一得到的结构色反蛋白石水凝胶薄膜中灌注石墨烯水凝胶前聚体,固化得到石墨烯结构色薄膜;
其中,石墨烯水凝胶前聚体是由还原氧化石墨烯溶液分散在水凝胶前聚体溶液中制成的。
2.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,水凝胶前聚体为丙烯酰胺、聚n-异丙基丙烯酰胺或琼脂糖中的一种。
3.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,所述还原氧化石墨烯溶液的浓度为4mg/ml,水凝胶前聚体溶液的浓度为20wt%,还原氧化石墨烯溶液与水凝胶前聚体溶液的体积比为1:3。
4.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,步骤一中的具体方法为:
利用所述胶体粒子自组装制备光子晶体正结构模板;
将所述生物相容性前聚体渗透到光子晶体正结构模板中,固化形成光子晶体-水凝胶杂交体;
去除光子晶体-水凝胶杂交体中的光子晶体正结构模板,得到结构色反蛋白石水凝胶薄膜。
5.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,所述生物相容性前聚体选自聚乙二醇二丙烯酸酯、聚乙二醇、甲基丙烯酸甲酯修饰的明胶或丙烯酰胺中的一种或两种混合。
6.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,所述胶体粒子选自二氧化硅、四氧化三铁、二氧化钛、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯酸乙酯或聚乙烯中的一种。
7.根据权利要求3所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,去除光子晶体-水凝胶杂交体中的光子晶体正结构模板采用的方法为化学腐蚀法、物理溶解法或者高温煅烧法。
8.根据权利要求1所述的石墨烯结构色薄膜的制备方法,其特征在于:
其中,步骤二中固化的方式为紫外照射或烘箱加热。
9.如权利要求1-8任意一项所述制备方法制得的石墨烯结构色薄膜。
10.如权利要求9所述的石墨烯结构色薄膜作为柔性电子材料的应用。
技术总结