本发明涉及高精度地图制作生成领域,尤其涉及一种基于无人机点云数据的高精度目标提取方法及系统。
背景技术:
高精度地图,通俗来讲就是精度更高、数据维度更多的电子地图。精度更高体现在精确到厘米级别,数据维度更多体现在其包括了除道路信息之外的与交通相关的周围静态信息。高精度地图将大量的行车辅助信息存储为结构化数据,比如车道周边的固定对象信息,比如交通标志、交通信号灯等指示信息。
近年来,无人机技术高速发展,在各个行业的应用无人机也如雨后春笋似的冒出来。在测绘领域,更多需要的是固定翼等效率高的无人机。
传统的高精度地图目标交通要素提取方法,采用测绘车采集激光点云数据,然后人工对交通要素进行提取。然而,测绘车的实车采集过程中部分区域无法行驶,人工提取交通要素的效率较低。
技术实现要素:
为了解决上述问题,本发明实施例提供一种克服上述问题或者至少部分地解决上述问题的基于无人机点云数据的高精度目标提取方法及系统。
第一方面,本发明实施例提供一种基于无人机点云数据的高精度目标提取方法,包括:
s1,获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;
s2,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;
s3,通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
优选的,步骤s1中,获取待检测图像,包括:获取无人机点云数据进行数据转换,获得二维鸟瞰图;将所述二维鸟瞰图进行预处理,获得目标场景的待检测图像。
优选的,步骤s2中,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框,具体包括:将所述待检测图像输入预先训练的目标检测模型后,若检测成功,则输出结构型交通要素的矩形包围框;其中,结构型交通要素是具有规则信息的交通要素;将矩形包围框对应的结构型交通要素进行分类保存,结构型交通要素至少包括人行横道、停车让行线、箭头、停止线和减速让行线。
优选的,将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点后,还包括:将目标轮廓点对应的非结构型交通要素进行分类保存;其中,目标轮廓点非结构型交通要素至少包括车道线、路缘石、道路边界线和护栏。
优选的,在步骤s3之后,该方法还包括:
通过3d聚类算法对解算出的三维坐标信息进行处理,以获得高精度地图所需的数据精度。
第二方面,本发明实施例提供了一种基于无人机点云数据的高精度目标提取系统,包括:
获取模块,用于获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;
交通要素提取模块,用于根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;
深度信息解算模块,用于通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
优选的,所述获取模块具体用于:获取无人机点云数据进行数据转换,获得二维鸟瞰图;将所述二维鸟瞰图进行预处理,获得目标场景的待检测图像。
第三方面,本发明实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现第一方面实施例所提供的基于无人机点云数据的高精度目标提取方法。
第四方面,本发明实施例提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行第一方面实施例所提供的基于无人机点云数据的高精度目标提取方法。
本发明实施例提供的基于无人机点云数据的高精度目标提取方法及系统,能够基于无人机点云数据自动提取交通要素的几何轮廓信息,减少人工提取交通要素的时间,提高了交通要素的提取效率,有助于提升高精度地图的制作效率。
本发明与现有技术相比较,具有如下有益效果:
1、本发明应用无人机测绘技术,无人机在空间上比测绘车更加的灵活,弥补测绘车的不足。采用无人机可以进入测绘车不能进入的区域,同时可以加速对匝道区域快速测绘。
2、无人机采集的点云数据中,每个像素点都嵌入了经纬度信息,因此,无人机点云数据能够更便捷的获取到交通要素的位置信息。
3、无人机点云数据除了提供物理世界的尺寸,还提供交通要素的相关属性,比如:双黄线的颜色属性等信息。为高精度地图的制作提供高效的制作模式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种基于无人机点云数据的高精度目标提取方法流程示意图;
图2为本发明实施例提供的基于无人机点云数据的高精度目标提取系统的结构框图;
图3为本发明实施例提供的电子设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
目前,传统的高精度地图目标交通要素提取方法,采用测绘车采集激光点云数据,然后人工对交通要素进行提取。然而,测绘车的实车采集过程中部分区域无法行驶,人工提取交通要素的效率较低。
因此,针对现有技术的以上问题,本发明实施例提供一种基于无人机点云数据的高精度目标提取方法,能够基于无人机点云数据自动提取交通要素的几何轮廓信息,减少人工提取交通要素的时间,提高了交通要素的提取效率,有助于提升高精度地图的制作效率。以下将结合附图通过多个实施例进行展开说明和介绍。
图1是本发明实施例提供的一种基于无人机点云数据的高精度目标提取方法流程示意图。首先对本发明实施例提供的方法的整体原理进行说明,该方法包括以下步骤:
s1,获取待检测图像,将所述待检测图像输入预先训练的目标检测模型。
具体地,首先,获取无人机点云数据进行数据转换,获得二维鸟瞰图。然后,将所述二维鸟瞰图进行预处理,获得目标场景的待检测图像。待检测图像可以是经无人机点云数据转换后得到的用于进行目标检测的二维鸟瞰图。本实施例中,预处理过程至少包括图像去噪和裁剪。经过图像去噪和裁剪,能够降低环境噪声影响,并从二维鸟瞰图中提取出感兴趣的区域作为待检测图像。
其中,点云数据可以是激光雷达扫描当前场景以点云的形式记录的三维坐标向量的集合,每一个三维坐标向量可以用(x,y,z)表示。无人机采集的点云数据中,每个像素点都嵌入了经纬度信息,基于无人机点云数据进行交通要素的目标检测,在后续能够更便捷的获取到交通要素的位置信息。
可以理解的是,本发明应用无人机测绘技术采集无人机点云数据,无人机在空间上比测绘车更加的灵活,弥补测绘车的不足。采用无人机可以进入测绘车不能进入的区域,同时可以加速对匝道区域快速测绘。无人机技术应用在高精度地图测绘,需要我们设计好航线,让无人机按照航线飞行,同时在合适的时候拍照,具体需要设置的有:
1)地面分辨率
为了提高成图的精度,设计平均航高时地面分辨率取0.1米。
2)航摄分区的划分
分区尽量按长方形进行划分,易于测区接边;航摄区域内的地形高度差不应大于1/6航摄航高,高差较大区域应划分分区。
3)分区基准面高度的确定
依据分区地形起伏、飞行安全条件等确定分区基准面高度。
4)生成航线
在地面站系统中进行航线的设计,分别将每个摄影分区的四角坐标输入到地面站软件,设置航线的间距和飞行的方向。
5)航摄季节和航摄时间的选择
a)航摄季节应选择摄区最有利的气象条件,应尽量避免或减少地表植被和其他覆盖物(如积雪、洪水等)对摄影和测图的不利影响,确保航摄影像能够真实地显示地面细部。
b)航摄时,既要保证具有充足的光照度,又要避免多大的阴影。
c)森林、草地、大面积的盐滩、盐碱地,正午前后各2小时内不应摄影。
d)陡峭山区和高层建筑物密集的大城市应在当地正午前后各1小时内摄影。
s2,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点。
本实施例中,将交通要素分类为结构型交通要素和非结构型交通要素。结构型交通要素可以理解为具有规则信息的交通要素。结构型交通要素可以理解为不具有规则信息的交通要素。
具体地,对于结构型交通要素,将所述待检测图像输入预先训练的目标检测模型后,若检测成功,则输出结构型交通要素的矩形包围框,此时矩形包围框具有二维坐标信息,坐标体系为x-y。然后,将矩形包围框对应的结构型交通要素进行分类保存,结构型交通要素至少包括人行横道、停车让行线、箭头、停止线和减速让行线。
对于非结构型交通要素,在目标检测网络未检测到结构型交通要素,即目标检测网络检测不成功之后,将待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点。目标轮廓点具有二维坐标信息。然后,将目标轮廓点对应的非结构型交通要素进行分类保存。其中,目标轮廓点非结构型交通要素至少包括车道线、路缘石、道路边界线和护栏。
s3,通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
具体地,对于结构型交通要素,将分类保存的结构型交通要素,结合点云数据处理方法,解算出结构型交通要素矩形包围框的深度信息,从而得到所述结构型交通要素矩形包围框的三维坐标信息,坐标体系为x-y-z。对于非结构型交通要素,将分类保存的非结构型交通要素,结合点云数据处理方法,解算出非结构型交通要素目标轮廓点的深度信息,从而得到目标轮廓点的三维坐标信息。
进一步地,通过3d聚类算法对解算出的三维坐标信息进行处理,以获得高精度地图所需的数据精度。3d聚类算法包括但不限于k-means聚类算法。
本发明与现有技术相比较,具有如下有益效果:
1、本发明应用无人机测绘技术,无人机在空间上比测绘车更加的灵活,弥补测绘车的不足。采用无人机可以进入测绘车不能进入的区域,同时可以加速对匝道区域快速测绘。
2、无人机采集的点云数据中,每个像素点都嵌入了经纬度信息,因此,无人机点云数据能够更便捷的获取到交通要素的位置信息。
3、无人机点云数据除了提供物理世界的尺寸,还提供交通要素的相关属性,比如:双黄线的颜色属性等信息。为高精度地图的制作提供高效的制作模式。。
在一个实施例中,图2为本发明实施例提供的基于无人机点云数据的高精度目标提取系统的结构框图,参照图2,该系统包括:
获取模块201,用于获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;
交通要素提取模块202,用于根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;
深度信息解算模块203,用于通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
具体的如何利用获取模块201、交通要素提取模块202和深度信息解算模块203进行基于无人机点云数据的高精度目标提取,可以参照上述方法实施例,本发明实施例在此不再赘述。
在一个实施例中,图3为本发明实施例提供的电子设备的结构示意图,参照图3,电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,处理器和存储器通过通讯线连接。所述处理器执行所述计算机程序时实现上述各实施例所提供的基于无人机点云数据的高精度目标提取方法的步骤,例如包括:s1,获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;s2,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;s3,通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
示例性的,发明实施例中使用的电脑环境为windows10,显卡为gtx1080ti,软件开发环境为pycharm和adaconda3,深度学习开发环境为pytorch。
在一个实施例中,基于相同的构思,本发明实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的基于无人机点云数据的高精度目标提取方法的步骤,例如包括:s1,获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;s2,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;s3,通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
本发明的各实施方式可以任意进行组合,以实现不同的技术效果。
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
1.一种基于无人机点云数据的高精度目标提取方法,其特征在于,包括:
s1,获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;
s2,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;
s3,通过点云数据处理方法,分别解算出所述矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
2.根据权利要求1所述的基于无人机点云数据的高精度目标提取方法,其特征在于,步骤s1中,获取待检测图像,包括:
获取无人机点云数据进行数据转换,获得二维鸟瞰图;
将所述二维鸟瞰图进行预处理,获得目标场景的待检测图像。
3.根据权利要求1所述的基于无人机点云数据的高精度目标提取方法,其特征在于,步骤s2中,根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框,具体包括:
将所述待检测图像输入预先训练的目标检测模型后,若检测成功,则输出结构型交通要素的矩形包围框;其中,结构型交通要素是具有规则信息的交通要素;
将矩形包围框对应的结构型交通要素进行分类保存,结构型交通要素至少包括人行横道、停车让行线、箭头、停止线和减速让行线。
4.根据权利要求1所述的基于无人机点云数据的高精度目标提取方法,其特征在于,将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点后,还包括:
将目标轮廓点对应的非结构型交通要素进行分类保存;其中,目标轮廓点非结构型交通要素至少包括车道线、路缘石、道路边界线和护栏。
5.根据权利要求1所述的基于无人机点云数据的高精度目标提取方法,其特征在于,在步骤s3之后,还包括:
通过3d聚类算法对解算出的三维坐标信息进行处理,以获得高精度地图所需的数据精度。
6.一种基于无人机点云数据的高精度目标提取系统,其特征在于,包括:
获取模块,用于获取待检测图像,将所述待检测图像输入预先训练的目标检测模型;
交通要素提取模块,用于根据目标检测网络的输出结果判断是否检测成功,若是,则获得结构型交通要素的矩形包围框;若否,则将所述待检测图像输入预先训练的深度学习分割模型,输出非结构型交通要素的目标轮廓点;
深度信息解算模块,用于通过点云数据处理方法,分别解算出矩形包围框和目标轮廓点的深度信息,从而得到所述矩形包围框和所述目标轮廓点的三维坐标信息。
7.根据权利要求6所述的基于无人机点云数据的高精度目标提取系统,其特征在于,所述获取模块具体用于:获取无人机点云数据进行数据转换,获得二维鸟瞰图;将所述二维鸟瞰图进行预处理,获得目标场景的待检测图像。
8.一种基于无人机点云数据的高精度目标提取系统,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述基于无人机点云数据的高精度目标提取方法的步骤。
9.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至5任一项所述基于无人机点云数据的高精度目标提取方法的步骤。
技术总结