本发明涉及一种变分模式分解的sru(simplerecurrentunit,简单循环单元)故障预测方法,属于信息安全技术领域。
背景技术:
目前工业食品生产系统逐渐向网格化生产格局发展,通常由多个子系统构成,不同子系统承担不同的生产任务,多个子系统与控制中心共同组成整个工业食品生产系统,具有更高的生产效率。而网络化的生产格局带来更高生产效率的同时,也会带来更为严峻的挑战。比如,目前工业食品生产系统故障频发,且单个子系统的故障隐患很可能导致整个生产系统的瘫痪。同是这种耦合性较强的工业生产模式结构复杂,故障的形成因素较多,而且会随着生产时间的累积,故障产生的概率也会随之增加。因此,如何建立具有较好预测性能的故障预测模型成为当今工业食品生产系统故障预测领域广泛关注的问题。
传统模型预测方法通过采集大量的数据训练模型实现对于故障的预测,但这种方法,一方面需要
传统模型预测方法需要利用大量的数据训练模型,通过已知故障的状态量的传感器收集数据。只有通过这些已知数据得到训练后的模型,才可以运用模型预测方法得到系统的故障状态。因为模型预测方法是以已有数据进行训练,所以模型预测方法只能预测已经发生的故障,很难提前预测到未知潜在故障,这很难无法满足现代工业食品生产系统对于故障预测实时性要求。
另外前述提及现代工业食品生产系统产生的数据维度变得越来越多,导致模型预测方法无法进行及时预测。在这种情况下,处理大数据优势较大的深度学习方法在该领域取得很大的发展,特别是lstm(longshort-termmemory,长短时记忆网络),其最大优势在于不需要大量的已知数据,在处理时间序列上具有较大优势。但由于该网络的结构复杂,处理速度较慢,训练测试需要完全依赖前一时刻的训练结果,无法同时处理多个时间数据,训练效率不高。
技术实现要素:
为了解决目前故障预测过程中存在的训练时间长且实时性不好的问题,本发明提供了一种变分模式分解的sru故障预测方法,所述方法包括:
s1采集工业食品生产系统各个子系统运行期间的k维数据;
s2采用变分模式分解非递归方法将s1采集到的k维数据分解为多个模态,并提取各个模态的主要特征数据;
s3将s2得到的多个主要特征作为输入,利用sru故障预测模型进行故障预测。
可选的,所述s2采用变分模式分解非递归方法将s1采集到的k维数据分解为多个模态,并提取各个模态的主要特征数据,包括:
提取各个子系统中心节点wk的附近模态,中心节点与各个模态间的距离定义为带宽;
主要特征数据筛选过程如下:
式中,uk和wk分别表示所有模态及其中心节点的集合,
式(3)表示拉格朗日优化函数:
其中,α是数据真实度约束的平衡因子,λ表示拉格朗日乘数,然后使用交替方向乘子法求解(2);在fourier域内利用滤波算法直接更新最优的滤波信号{uk(w)}。
时域中的模态{uk(t)}导出为:
式中,s(w)是原始数据s(t)的傅里叶变换,n表示节点个数,i表示第i个节点,ifft(·)表示信号的傅里叶逆变换,而
得到中心频率的集合wk,根据不同模态的中心频率获得符合带宽范围条件的多个主要特征数据。
可选的,所述带宽由l2范数估计梯度决定。
可选的,所述s3中的sru故障预测模型的基本单元中,上一个单元的输出ht-1不参与下一单元遗忘门的输出ft的计算。
可选的,所述s3将s2得到的多个主要特征作为输入,利用sru故障预测模型进行故障预测,包括:
归一化处理后得到的多个主要特征数据,采用min-max标准化法,将其映射到[0,1]区间;
式中x′是归一化后的平均值,xmin是主要特征数据中的最小值,xmax是主要特征数据中的最大值,x为主要特征数据的原始值;
将步骤三中得到的标准化主要特征数据xt作为输入,利用sru故障预测模型进行故障预测。
可选的,所述将步骤三中得到的标准化主要特征数据xt作为输入,利用sru故障预测模型进行故障预测,包括:
对输入的主要特征数据xt进行映射变换:
x′t=wxt(8)
计算遗忘门和输入门的输出ft和it:
ft=σ(wfxt bf)(9)
it=σ(wixt riht-1 bi)(10)
其中σ(·)是sigmoid激活函数;wf、wi、bf及bi是训练过程中参数学习向量,w表示的是系统矩阵,wf、wi分别表示遗忘门和输出门的系统矩阵,bf和bi分别表示遗忘门和输出门的偏差参数,ft是遗忘门的输出,it是输出门的输入。
计算故障内容表示向量ct,
ct=ft⊙ct-1 it⊙x′t
=ft⊙ct-1 (1-ft)⊙x′t(11)
其中,⊙表示元素乘运算;
将ct通过sigmoid激活函数g来计算最终的输出故障概率ht:
ht=g(ct)
可选的,遗忘门和输入门都是sigmoid门。
可选的,所述s1中采集工业食品生产系统各个子系统运行期间的k维数据包括:进料量,进料速度,生产机的压强、温度及液位,发动机机械功率和/或物料流量。
可选的,所述方法采用对应的传感器采集相应的多维数据。
本发明还提供一种变分模式分解的sru故障预测模型,所述模型的基本单元为在lstm单元结构上进行改进得到,各基本单元的输出不参与下一单元中遗忘门的输出的计算。
本发明有益效果是:
通过结合变分模式分解的sru(simplerecurrentunit,简单循环单元)模型来对工业食品生产系统进行故障预测,sru模型是lstm模型的变体,在具有处理时间序列优势的同时,稀疏了整个模型结构,实现并行化处理,处理速度大幅提高。
使用vmd算法对数据进行分解,并根据分解后的模态信号提取统计特征;然后利用这些统计特征进行归一化处理作为神经网络的输入特征;最后根据sru故障预测模型的训练测试得到最后的故障预测结果。
本发明具有以下优点:
(1)本发明所提出的一种基于vmd分解多个主模态的方法,可以有效避免使用原始数据而出现大量噪声信息干扰的问题,对后期故障预测的准确性作了很好的铺垫;
(2)结合sru故障预测模型特征的并行化训练特点,迎合了工业食品生产系统多维度,数据海量难以处理的问题,而并行化的训练方式也能有效的提高训练时间,契合真实故障预测中对实时性的要求,大大缩短了故障预测的预测时间。
(3)最后将优化后的sru故障预测模型融合vmd分解主模态方法,创建新型故障预测模型,并且对模型的相关参数进行优化,提出融合的sru故障预测模型,提高了故障预测的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是原始lstm神经单元结构图。
图2是改进sru神经单元结构图。
图3是变分模式分解sru故障预测流程图。
图4是不同方法故障预测准确率性能比较图。
图5是不同方法故障预测误检率性能比较图。
具体实施方式
神经网络方法对工业食品生产系统进行准确的故障预测,这种做法可以有效提高预测的实时性和准确性,减少了大量的人工监督的成本,由于工业食品生产系统的分布式流水线生产结构的存在,故障预测对系统的实时性要求较高,极大可能存在单一子系统出现故障,进而导致整个生产系统的瘫痪。
因此,本申请提供一种变分模式分解的sru故障预测方法,使用结合vmd的sru故障预测模型,针对工业食品生产系统的多维数据,利用其时间序列特性,构造sru预测模型,并且使用vmd算法将数据进行特征提取,准确的预测出故障发生的时间。
通过与其他故障预测方法的预测性能结果比较,可知本申请提供的sru故障预测方法在不同传感器数据下,均能取得较好的故障预测效果,并且突出展示出较高的预测速度,可以满足工业食品生产系统故障预测领域对于实时性的要求。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本实施例提供一种基于变分模式分解的sru故障预测方法,包括以下步骤:
1)采用变分模式分解(vmd)非递归方法将原始k维数据分解为多个模态,该方法对传感器采集到的原始k维数据进行分解,并根据分解后的模态信号提取对预测性能影响较大的特征,也即主要特征。
2)采用局部回归滤波器对主要特征进行平滑处理,并通过单调性和特征适应度从主要特征中选择合适的特征进行相关分析。
3)构建sru故障预测模型,所构建的sru故障预测模型的单元结构在原始lstm单元结构上进行改进,不再将上一个神经单元的输出ht-1参与到下一单元遗忘门的输出ft的计算当中,也即不再遵守神经单元的计算顺序,从而克服了下一个神经单元的计算参数将由上一个神经单元的输出决定所带来的计算量大且时间滞后的问题。
4)将步骤(2)提取到的主要特征作进行归一化处理后作为sru故障预测模型的输入训练sru故障预测模型以确定模型的参数。
sru故障预测模型训练过程中,通过改进后的输入、输出和遗忘门的结构来控制存储单元的信息流。最后通过softmax分类器得到最优的控制单元状态输出,以便后续在实际工业系统中进行实时故障预测。
具体的,以该基于变分模式分解的sru故障诊断方法应用于工业食品生产系统进行故障诊断为例进一步说明如下:
步骤一,采集数据
采集工业食品生产系统中各个子系统运行期间的k维数据,包括进料量,进料速度,生产机的压强、温度及液位,发动机机械功率,物料流量等,可采用对应的传感器采集相应的数据。
步骤二,vmd模式分解
步骤一所采集到的数据中,并不是所有的数据都能准确反映出故障发生的时间,比如反应器的温度和压强的突变可能反映出生产机器在接下来的生产过程中会出现运行故障,而液位,速度等数据类型则对预测运行故障的影响较小。
因此,本申请采用变分模式分解的方法将步骤一采集到的k维数据分解为多个模态,将分解后的模态数据从时域和频域两个方面进行主要特征提取,得到各个模态下对故障预测性能较好的主要特征数据。主要特征数据指的是在食品生产系统中由于故障发生而急剧变化的特征数据,比如电机短路时温度的急剧升高,或者生产停止时压强的急剧下降,这些特征数据的急剧变化对故障预测的影响较大,本申请采用vmd算法提取这些主要特征数据进行故障预测。也即,每个模态包含有步骤一中采集到的各个维度的特征数据,但每个模态中只有一部分特征数据对预测故障影响较大,也即主要特征数据。
采用vmd分解主模态的原理是提取各个子系统中心节点wk的附近模态,中心节点与各个模态间的距离定义为带宽,带宽范围内的特征数据即为主要特征数据,将他们以集合的方式输出,超出带宽范围的特征数据对于后期的故障预测性能影响较小或者会降低预测性能,因此将这部分特征数据筛选出去。
带宽由l2范数估计梯度决定。
主要特征筛选过程如下:
式中,uk和wk分别表示所有模态及其中心节点的集合,
式(3)表示拉格朗日优化函数:
式中,λ表示拉格朗日乘数,α是数据真实度约束的平衡因子,然后使用交替方向乘子法求解(2)。在fourier域内利用滤波算法直接更新最优的滤波模态{uk(w)}。
时域中的模态{uk(t)}导出为:
式中,s(w)是原始数据s(t)的傅里叶变换,n表示节点个数,i表示第i个节点,ifft(·)表示信号的傅里叶逆变换,而
得到中心频率的集合wk,根据不同模态的中心频率获得符合范围条件的多个主要特征数据,将这些主要特征数据作为故障预测模型的输入,为下面算法准确预测作铺垫。
vmd算法的主要作用是筛选得到工业食品生产系统的主要特征数据,包括:温度特征、压强特征、电机的功率特征和物料量特征等。通过这些对后期故障预测起关键作用的主要特征数据来判断生产系统在运行工程中是否存在故障隐患,在降低故障预测模型训练压力的同时能够提高预测的准确性。
步骤三数据预处理:
由于数据集中筛选的主要特征数据表示不同的物理意义,具有不同的单位,在数值上具有较大的差别,因此将数值归一化处理,采用min-max标准化法,将其映射到[0,1]区间。公式如下:
式中x′是归一化后的平均值,xmin是数据特征中的最小值,xmax是数据特征中的最大值,x为特征的原始值通过数据归一化的方法得到处理完的统一数据,并且将它们作为训练集进行训练。
步骤四建立sru故障预测模型:
参见图1和图2,图1是处理时间序列的原始lstm单元结构图,本申请所构建的sru故障预测模型的基本单元在图1所示的原始lstm单元结构图上进行改进,得到图2所示的本申请提供的sru故障预测模型的基本单元。
图1中遗忘门的输出ft由上一个神经单元的输出ht-1,这意味着在原始lstm训练中要完全遵守神经单元的计算顺序进行,下一个神经单元的计算参数将由上一个神经单元的输出决定,这不仅增加了预测模型的计算压力,而且在预测的时间上有一定的滞后,无法满足故障预测中对实时性的要求。
而本申请改进后的图2所示的sru故障预测模型的基本单元,则不再将上一个神经单元的输出ht-1参与到下一单元遗忘门的输出ft的计算当中,也即不再遵守神经单元的计算顺序,从而克服了下一个神经单元的计算参数将由上一个神经单元的输出决定所带来的计算量大且时间滞后的问题。
确定上述基本单元结构后,进一步得到sru故障预测模型;
将步骤三中得到的标准化主要特征数据作为上述构建得到的sru故障预测模型的输入进行训练,具体的:
将步骤三中得到的标准化主要特征数据xt作为sru基本单元的输入计算细胞状态ct的时序序列,该步骤可锁定序列信息。其中wf、w、bf及br是训练过程中参数学习向量,w表示的是系统矩阵,br表示偏差参数,ft是遗忘门的输出,如图2所示。
首先对输入的主要特征数据xt进行映射变换:
x′t=wxt(8)
下面计算输入门和遗忘门,两个都是sigmoid门:
ft=σ(wfxt bf)(9)
it=σ(wixt riht-1 bi)(10)
其中σ(·)是sigmoid激活函数;wf、wi、bf及bi是训练过程中参数学习向量,w表示的是系统矩阵,wf、wi分别表示遗忘门和输出门的系统矩阵,bf和bi分别表示遗忘门和输出门的偏差参数,ft是遗忘门的输出,it是输出门的输入。
计算故障内容表示向量ct,
ct=ft⊙ct-1 it⊙x′t
=ft⊙ct-1 (1-ft)⊙x′t(11)
其中,⊙表示元素乘运算;
将ct通过sigmoid激活函数g来计算最终的输出故障概率ht:
ht=g(ct)。
由公式(8)到(10),可以看出,ht-1的依赖性已被移除,因为输出不再依赖于滞后项ht-1的输入,实现神经网络的并行化处理,多个神经单元可以同时对数据进行训练计算,有效稀疏了神经网络的训练结构,提高训练的速度和准确性,满足故障预测对于实时性的要求,能较快的对故障进行预测诊断。
为验证本申请提出的基于变分模式分解的sru故障诊断方法对的工业食品生产系统具有较好的故障预测性能,特进行实验如下:
一、实验数据:
采用phm08数据集作为本次实验的实验数据,phm08数据集是预测与健康管理国际会议上发布的工业食品生产系统的数据集,该数据集采集了工业分布式食品生产网络中的相关数据,主要针对系统的运行维护和健康管理这两方面领域。本实验主要模拟工业食品生产系统中存在的时域故障类型,分为永久故障,间歇故障和瞬态故障等。
整个实验数据集的采集时间为15s,传感器收集到的数据为56维数据节点,采样总时长是80个生命周期数据,数据库可以采集到4480个采样样本,其中永久故障样本数为34个,间歇故障为136个,瞬态故障为496个。
二、评价指标
本实验采用几种广泛使用的度量方法来评估工业食品生产系统规则的预测精度,即rmae、rrmse、acc和loss。
rmae、rrmse的定义分别为
其中rmae表示真实值和预测值的误差绝对值,而rrmse表示真实值和预测值的均方误差,两者的数值越小,表示故障的预测性能越好,n是样本数,
三、故障预测结果及对比分析
采用本申请提出的vmd-sru故障预测模型对食品加工系统的运行进行故障预测,将50个选定的主要特征缩放到范围[0,1]。然后将这些主要特征传输到sru算法模型。该模型以32个隐单元的sru层作为输入层,两个不同数量神经单元(24,1)的稠密层分别作为隐层和输出层。采用dropout函数(下降率为0.4),以缓解训练过程中的过度适应问题。
对于从工业食品生产系统上获取的原始传感信号,通过vmd得到六个主要特征和一个残差。本申请提出的基于vmd的方法能够有效地捕捉主模态信息并获得更准确的预测结果。
使用故障预测准确性指标acc和损失率指标loss评估了vmd-sru方法的预测性能。通过与本模型比较的其他五种数据驱动算法简单循环单元(sru)、双向lstm(bilstm)、门控循环单元(gru)和vmd-sru等的比较,说明了该方法的优越性。在这项工作中,记录了每个工业食品生产系统最近200个观测样本的预测结果,以评估这些方法的有效性。为了减少随机性的影响,本说明的实验结果平均为20次试验。
表1显示了基于不同方法的故障数值预测结果,对于故障指标rrmse,所提出的vmd-sru方法的故障预测误差基本上都是两个方位最小。
实验过程中选取现有的几种故障预测方法与本申请提出的方法进行对比,几种故障预测方法分别为sru、bilstm、gru、emd和vmd-cnn算法,其中:
sru可参考“王挺,盛文,蒋伟.基于多分类svm的t/r组件sru级故障诊断[j].现代电子技术,2019,42(23):67-71.”;
bilstm可参考“remadnai,terrissasl,zemourir,etal.leveragingthepowerofthecombinationofcnnandbi-directionallstmnetworksforaircraftenginerulestimation[c]//2020prognosticsandhealthmanagementconference(phm-besanon).2020:1-7.”;
gru可参考“车畅畅,王华伟,倪晓梅,付强.基于改进gru的发动机剩余寿命预测[j].航空计算技术,2020,50(01):13-16 20.”;
emd可参考“张垚,王巧,洪峰,丁娟.基于emd算法的机电系统故障诊断与辨识技术研究[j].无线电工程,2020,50(11):989-994.”;
vmd-cnn可参考“吴东升,杨青,张继云,纪振平.基于vmd-lmd-cnn的集合型故障诊断方法[j].轴承,2020(10):57-63.”。
本申请模型的rrmse误差值为3.54%,相对于上述sru、bilstm、gru、emd、vmd-cnn算法来说,本申请提出的故障预测方法的误差率分别减少了11.02%、7.68%、6.23%、11.78%和4.97%。而在训练时间方面,本申请提出的故障预测方法的训练时间为2.61,相对于上述sru、bilstm、gru、emd、vmd-cnn算法的训练时间,本申请方法分别缩短了6.13、0.68、0.21、4.56和3.21,因此本申请方法训练时间更短,速度更快。
总体而言,实验结果证明了本申请提出的故障预测方法在工业食品生产系统预测中的优势,即训练时间更短,预测的更准确。
表1数据集试验结果对比
表2不同方法中的评价指标对比
表2显示的是本申请提出的故障预测方法在准确率acc和损失率loss方面与其他相似方法的对比,通过最后的实验结果可以看出,本申请提出的故障预测方法的训练效果相对于其他方法,均取得较为不错的预测结果。
图3和图4分别表示本文方法在不同的故障类型下的预测性能结果,图3表示的是在永久故障、瞬态故障和间歇故障这三个故障类型下的故障预测准确性,而图4表示的是不同方法在这三个故障类型预测的误检率上的对比结果。通过图中结果显示,本申请提出的故障预测方法的预测性能更优,且有不错的泛化能力。
本申请提出了一种基于vmd和sru的神经网络故障预测模型。vmd用于将原始分解为几个主模态分量并提取其特征。从时域和频域提取统计特征,选择具有高适应性特点的主要特征,并在实验部分验证了该方法的有效性。最后,使用多层神经网络的sru模型来预测故障。实验结果表明,vmd方法优于其他相似方法,验证了该方法的有效性和优越性。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
1.一种变分模式分解的sru故障预测方法,其特征在于,所述方法包括:
s1采集工业食品生产系统各个子系统运行期间的k维数据;
s2采用变分模式分解非递归方法将s1采集到的k维数据分解为多个模态,并提取各个模态的主要特征数据;
s3将s2得到的多个主要特征作为输入,利用sru故障预测模型进行故障预测。
2.根据权利要求1所述的方法,其特征在于,所述s2采用变分模式分解非递归方法将s1采集到的k维数据分解为多个模态,并提取各个模态的主要特征数据,包括:
提取各个子系统中心节点wk的附近模态,中心节点与各个模态间的距离定义为带宽;
主要特征数据筛选过程如下:
式中,uk和wk分别表示所有模态及其中心节点的集合,
式(3)表示拉格朗日优化函数:
其中,α是数据真实度约束的平衡因子,λ表示拉格朗日乘数,然后使用交替方向乘子法求解(2);在fourier域内利用滤波算法直接更新最优的滤波信号{uk(w)};
时域中的模态{uk(t)}导出为:
式中,s(w)是原始数据s(t)的傅里叶变换,n表示节点个数,i表示第i个节点,ifft(·)表示信号的傅里叶逆变换,而
得到中心频率的集合wk,根据不同模态的中心频率获得符合带宽范围条件的多个主要特征数据。
3.根据权利要求2所述的方法,其特征在于,所述带宽由l2范数估计梯度决定。
4.根据权利要求3所述的方法,其特征在于,所述s3中的sru故障预测模型的基本单元中,上一个单元的输出ht-1不参与下一单元遗忘门的输出ft的计算。
5.根据权利要求4所述的方法,其特征在于,所述s3将s2得到的多个主要特征作为输入,利用sru故障预测模型进行故障预测,包括:
归一化处理后得到的多个主要特征数据,采用min-max标准化法,将其映射到[0,1]区间;
式中x′是归一化后的平均值,xmin是主要特征数据中的最小值,xmax是主要特征数据中的最大值,x为主要特征数据的原始值;
将步骤三中得到的标准化主要特征数据xt作为输入,利用sru故障预测模型进行故障预测。
6.根据权利要求5所述的方法,其特征在于,所述将步骤三中得到的标准化主要特征数据xt作为输入,利用sru故障预测模型进行故障预测,包括:
对输入的主要特征数据xt进行映射变换:
x′t=wxt(8)
计算遗忘门和输入门的输出ft和it:
ft=σ(wfxt bf)(9)
it=σ(wixt riht-1 bi)(10)
其中σ(·)是sigmoid激活函数;wf、wi、bf及bi是训练过程中参数学习向量,w表示的是系统矩阵,wf、wi分别表示遗忘门和输出门的系统矩阵,bf和bi分别表示遗忘门和输出门的偏差参数,ft是遗忘门的输出,it是输出门的输入;
计算故障内容表示向量ct,
ct=ft⊙ct-1 it⊙x′t
=ft⊙ct-1 (1-ft)⊙x′t(11)
其中,⊙表示元素乘运算;
将ct通过sigmoid激活函数g来计算最终的输出故障概率ht:
ht=g(ct)。
7.根据权利要求6所述的方法,其特征在于,遗忘门和输入门都是sigmoid门。
8.根据权利要求1所述的方法,其特征在于,所述s1中采集工业食品生产系统各个子系统运行期间的k维数据包括:进料量,进料速度,生产机的压强、温度及液位,发动机机械功率和/或物料流量。
9.根据权利要求1所述的方法,其特征在于,所述方法采用对应的传感器采集相应的多维数据。
10.一种变分模式分解的sru故障预测模型,其特征在于,所述模型的基本单元为在lstm单元结构上进行改进得到,各基本单元的输出不参与下一单元中遗忘门的输出的计算。
技术总结