一种基于果纹图谱信息的编码和识别方法及装置与流程

    专利2022-07-08  105


    本发明涉及植物特征提取和识别技术,特别是涉及到基于水果天然纹路的信息编码和识别技术。



    背景技术:

    建立“从田间到餐桌”的全过程质量安全追溯体系,已成为确保民众“舌尖上安全”的迫切需要。个体或者批次识别是实现追溯的基础,已有识别手段多以条码或无线射频识别(radiofrequencyidentification,rfid)技术为基础。

    条码技术功能强大,例如输入方式具有速度快、准确率高、可靠性强等特点,在商品流通、工业生产、仓储管理、信息服务等领域得到了广泛的应用。一维条码通常只是对物品的类别进行标识,而不能对物品的属性进行描述。二维条码的出现大大弥补了一维条码的不足,二维条码能水平和垂直方向的二维空间存储信息。rfid是一种非接触式的自动识别技术,具有存储容量大、可加密访问、支持多标签识读等特性,但其成本也较高。

    但是对于水果等植物品种,如果附加条码信息以进行编码、识别和溯源,则会存在各种困难和缺点,首先,果品自身形状不规则,贴制条码或rfid标签易脱落,而且果品不规则表面不利于条码的读取;其次,果品表面贴制标签容易污染果品表皮,影响果品品质,也容易产生质量安全问题;另外,单个果品贴制标签,既增加了标签等耗材的成本,也增加了人力成本;另外,条码还可能存在伪造和复制,相同条码信息不一定意味着相同的水果,因此降低了条码信息的可信度。



    技术实现要素:

    为了解决现有技术中对于水果等植物品种,如果附加条码信息以进行编码、识别和溯源,则会存在各种困难,例如由于果品自身形状不规则,贴制条码或rfid标签易脱落,而且果品不规则表面不利于条码的读取;另外果品表面贴制标签容易污染果品表皮,影响果品品质,也容易产生质量安全问题;另外,单个果品贴制标签,既增加了标签等耗材的成本,也增加了人力成本;另外,条码还可能存在伪造和复制,相同条码信息不一定意味着相同的水果,因此降低了条码信息的可信度等技术问题。本发明提出了一种基于果纹图谱信息的编码和识别方法及装置,能够利用利用果品自身的果纹特征,构建基于果纹特征的图谱的编码方法,建立每个果品的“身份证”,进而实现果品的单果识别;设计果纹图谱获取与生成装置,用于快速获取果品表面图像、图像特征提取、生成果纹图谱。

    为了实现这一目标,本发明采取了如下的技术方案。

    一种基于果纹图谱信息的编码和识别方法,该方法包括以下步骤:

    a、夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    b、分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;

    c、分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    d、对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    本发明的特点之一在于利用水果的天然纹路作为基准,将该天然纹路中提取出图像特征,并进行图像特征编码,一般说来,没有纹路完全相同的两个水果,因此只要控制果蒂部分和果脐部分图像具有足够的分辨率,可以将世上所有的水果都编出不同的特征编码出来,因此本发明的技术效果在于准确性、唯一性。

    因为水果的天然纹路不易篡改,无法复制,即使水果生长发生了形状改变也基本保持原有纹路信息,因此本发明具有能够防伪、便于溯源的突出优点。对于纹路比较显著的水果,例如西瓜、哈密瓜、苹果等水果的编码和识别,特别适合。

    另外,本发明的特点之一在于,分别利用了水果果蒂部分矩形图像和果脐部分矩形图像的特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表,因此进行特征编码表匹配以识别水果时,可以首先利用合并后的双向特征编码表进行匹配,如果合并后的双向特征编码表能匹配,则说明待识别水果与数据库中所存储的水果完全匹配,能够用于快速匹配;但如果发生了水果的局部外皮擦伤,例如水果果蒂部分矩形图像和果脐部分矩形图像中的一个发生了形状或花纹改变,导致合并后的双向特征编码表不能匹配时,也可以考虑分别利用果蒂部分特征编码表和果脐部分特征编码表来进行识别,当仅有一种特征编码表能够匹配并符合其他条件时,也能被视作识别成功,因此本发明的编码和识别方法还具有一定的容错性,能够兼容检测效率和鲁棒性。

    另外,所述对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像的步骤包括:

    b1、在果蒂部分图像和果脐部分图像中,根据果蒂和果脐的灰度与外围表皮的灰度存在的差异,对果蒂和果脐核心的外边缘进行定位,并提取果蒂和果脐的中心位置;

    b2、分别以提取的果蒂和果脐的中心位置为圆心,以中心到边缘的预定距离r1和r2为半径绘制同心圆,提取两个同心圆之间的圆环为待处理区域;

    b3、对待处理区域进行归一化处理为:

    i(x(r,θ),y(r,θ))→i(r,θ),

    其中,

    其中,i(x,y)表示圆环图像;(r,θ)表示归一化后的极坐标,r∈[0,1],θ∈[0°,360°],当r=0时,表示i(x(r,θ),y(r,θ))为圆环图像内边缘的像素点;当r=1时,表示i(x(r,θ),y(r,θ))为圆环图像外边缘的像素点;对于待处理区域中的每一个点(xi,yi),分别考虑与中心点(x0,y0)的关系,确定其(r,θ),并以r和θ为直角坐标,将圆环图像变换为直角坐标下的矩形图像i(r,θ)。

    另外,对于转换后的果蒂部分矩形图像和果脐部分矩形图像,分别进一步采取直方图均衡化来增强图像,用于获得更清晰的纹理;所述采取直方图均衡化为:

    其中n是所述待增强图像像素的总数,n(rk)为图像出现灰度级为rk的像素数,k为灰度级数,t(rk)为对于灰度级rk的转换函数,s(rk)为转换后的灰度级。

    另外,所述分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表的步骤包括:

    c1、首先用哈尔小波变换提取各通道的能量均值μ及方差σ,使用k均值聚类方法进行聚类,得到小样本集的圆环图像;

    c2、使用二维gabor滤波提取圆环图像的纹理信息,得到相应的纹理特征参数;其中所述二维gabor滤波的表达式为:

    其中,x1=xcosθ ysinθ,y1=-xsinθ ycosθ;波长λ以像素为单位指定,λ表示gabor核函数中余弦函数的波长参数,以像素为单位指定,通常大于等于2,但不能大于输入图像尺寸的五分之一;而θ为方向;指定了gabor函数并行条纹的方向,它的取值为0到360度。另外,σ表示gabor函数的高斯因子的标准差。

    c3、得到纹理特征参数后,判断其系数的实部和虚部的正负进行量化编码,具体为:

    其中,hre,him分别表示为滤波后特征参数的实部和虚部,fft表示傅里叶变换,ifft表示为傅里叶反变换。其中,g(f)表示滤波器,与前述的g(x,y)对应;i(r)表示归一化后的图像。

    另外,所述对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表为:

    c4、t=ta∪tb={x(i,j)|x(i,j)∈ta或x(i,j)∈tb},

    其中t为合并后的双向特征编码表,ta、tb分别为果蒂部分和果脐部分的特征编码表,x(i,j)为双向编码表中第i行第j列对应的值。

    另外,所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    d1、使用基于汉明距离的分类器进行匹配,其距离计算公式为:

    其中,n为特征编码位数,xor表示异或运算,pj、qj分辨表示纹理特征编码p、q的第j位;

    确定距离大于预定第一阈值,则属于不同的果品,确定距离小于预定第一阈值,则属于同一果品。

    另外,所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,如果依据果蒂部分特征编码表或果脐部分特征编码表得到的确定距离中的一个小于预定第一阈值,则只需确定距离中的另一个小于第二预定阈值即判断属于同一果品,结束识别。

    一种基于果纹图谱信息的编码和识别装置,所述基于果纹图谱信息的编码和识别装置包括图像获取装置、果纹图谱特征编码生成装置和果纹图谱特征信息识别装置,其中,

    所述图像获取装置用于夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    所述图谱特征编码生成装置用于分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;以及用于分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    另外,所述所述图像获取装置包括柔性夹持单元、同步转动单元、图像获取单元,其中,

    所述柔性夹持单元具有双向伸缩功能,用于根据不同果品的大小、形状夹持果品的两侧;

    所述同步转动单元能实现180度旋转,用于将夹持住的果品进行转动,以便于获取每个果品的瓜蒂和瓜脐部分两幅图像;

    所述图像获取单元用于每隔一定间隔触发图像获取,用于对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像。

    另外,所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,综合考虑识别结果进一步判断是否属于同一果品。

    本发明的技术效果包括如下:

    1.利用果类自身具有的外表纹理特性建立图谱特征信息,解决果类识别的唯一性和便捷性。所述果纹信息不易遗失,难以篡改,能充分保障水果识别和溯源过程中的准确性。

    2.通过果蒂部分特征编码表和果脐部分特征编码表建立合并后的双向特征编码表,提高识别的准确性,首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,综合考虑识别结果进一步判断是否属于同一果品;因此首先提高了准确度,同时保证了一定的纠错能力。

    3.采用二维gabor函数,其特征参数有频率和方向,提升了纹理提取的精度和编码的效率。

    附图说明

    图1为根据本发明具体实施方式中基于果纹图谱信息的编码和识别装置工作原理的示意图。

    图2为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的原理示意图。

    图3为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的流程示意图。

    图4为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的部分流程示意图。

    具体实施方式

    下面结合附图,对本发明作详细说明。

    以下公开详细的示范实施例。然而,此处公开的具体结构和功能细节仅仅是出于描述示范实施例的目的。

    然而,应该理解,本发明不局限于公开的具体示范实施例,而是覆盖落入本公开范围内的所有修改、等同物和替换物。在对全部附图的描述中,相同的附图标记表示相同的元件。

    参阅附图,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的位置限定用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。

    同时应该理解,如在此所用的术语“和/或”包括一个或多个相关的列出项的任意和所有组合。另外应该理解,当部件或单元被称为“连接”或“耦接”到另一部件或单元时,它可以直接连接或耦接到其他部件或单元,或者也可以存在中间部件或单元。此外,用来描述部件或单元之间关系的其他词语应该按照相同的方式理解(例如,“之间”对“直接之间”、“相邻”对“直接相邻”等)。

    图2为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的原理示意图。图3为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的流程示意图。如图所示,本发明具体实施方式中包括一种基于果纹图谱信息的编码和识别方法,该方法包括以下步骤:

    a、夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    b、分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;

    c、分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    d、对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    本发明的特点之一在于利用水果的天然纹路作为基准,将该天然纹路中提取出图像特征,并进行图像特征编码,一般说来,没有纹路完全相同的两个水果,因此只要控制果蒂部分和果脐部分图像具有足够的分辨率,可以将世上所有的水果都编出不同的特征编码出来,因此本发明的技术效果在于准确性、唯一性。

    因为水果的天然纹路不易篡改,无法复制,即使水果生长发生了形状改变也基本保持原有纹路信息,因此本发明具有能够防伪、便于溯源的突出优点。对于纹路比较显著的水果,例如西瓜、哈密瓜、苹果等水果的编码和识别,特别适合。

    另外,本发明的特点之一在于,分别利用了水果果蒂部分矩形图像和果脐部分矩形图像的特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表,因此进行特征编码表匹配以识别水果时,可以首先利用合并后的双向特征编码表进行匹配,如果合并后的双向特征编码表能匹配,则说明待识别水果与数据库中所存储的水果完全匹配,能够用于快速匹配;但如果发生了水果的局部外皮擦伤,例如水果果蒂部分矩形图像和果脐部分矩形图像中的一个发生了形状或花纹改变,导致合并后的双向特征编码表不能匹配时,也可以考虑分别利用果蒂部分特征编码表和果脐部分特征编码表来进行识别,当仅有一种特征编码表能够匹配并符合其他条件时,也能被视作识别成功,因此本发明的编码和识别方法还具有一定的容错性,能够兼容检测效率和鲁棒性。

    另外,图4为根据本发明具体实施方式中基于果纹图谱信息的编码和识别方法的部分流程示意图。如图琐事,在本发明具体实施方式中,所述对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像的步骤包括:

    b1、在果蒂部分图像和果脐部分图像中,根据果蒂和果脐的灰度与外围表皮的灰度存在的差异,对果蒂和果脐核心的外边缘进行定位,并提取果蒂和果脐的中心位置;

    b2、分别以提取的果蒂和果脐的中心位置为圆心,以中心到边缘的预定距离r1和r2为半径绘制同心圆,提取两个同心圆之间的圆环为待处理区域;

    b3、对待处理区域进行归一化处理为:

    i(x(r,θ),y(r,θ))→i(r,θ),

    其中,

    其中,i(x,y)表示圆环图像;(r,θ)表示归一化后的极坐标,r∈[0,1],θ∈[0°,360°],当r=0时,表示i(x(r,θ),y(r,θ))为圆环图像内边缘的像素点;当r=1时,表示i(x(r,θ),y(r,θ))为圆环图像外边缘的像素点;对于待处理区域中的每一个点(xi,yi),分别考虑与中心点(x0,y0)的关系,确定其(r,θ),并以r和θ为直角坐标,将圆环图像变换为直角坐标下的矩形图像i(r,θ)。

    获得果蒂部分图像和果脐部分图像后,根据果蒂和果脐的灰度与外围表皮的灰度存在的差异,对果蒂和果脐核心的外边缘进行定位,并提取果蒂和果脐的中心位置,例如采用阈值法、数学形态学运算以及hough变换对果蒂和果脐核心的外边缘进行定位。因为果蒂和果脐核心的外边缘一般形状大致为圆形,因此通过简单的数学计算即可确定果蒂和果脐核心的圆心。

    所述预定距离r1和r2根据需要选取,首先确定距离r1,当r1较小时,水果纹路容易出现聚集未分开,而当r1较大时,可能导致计算、编码的工作量过大。确定r1后,可以选择r2为r1的一定倍数,例如1.2~1.8倍r1。进而提取两个同心圆之间的圆环为待处理区域;

    所述归一化处理,实际上是一种圆形坐标向直角坐标下的变换映射关系,通过变换映射后可以发现,例如西瓜的放射状纹理基本上形成了直角坐标系中的条带状的纹理。

    另外,本发明具体实施方式中,对于转换后的果蒂部分矩形图像和果脐部分矩形图像,分别进一步采取直方图均衡化来增强图像,用于获得更清晰的纹理;所述采取直方图均衡化为:

    其中n是所述待增强图像像素的总数,n(rk)为图像出现灰度级为rk的像素数,k为灰度级数,t(rk)为对于灰度级rk的转换函数,s(rk)为转换后的灰度级。

    为了便于对果蒂部分矩形图像和果脐部分矩形图像进行图形特征提取,本发明首先对于矩形图像进行了增强,采用直方图均衡化的原因在于一副图像中,往往灰度比较集中,例如暗图像直方图的分量集中在灰度较低的一端,而亮图像直方图分量偏向于灰度较高的一端,在灰度上的分布不均匀会导致区分度低,如果使用均匀编码则编码精度较低,为此直方图均衡化可以让图像的灰度分布更加均匀。如果一幅图像的灰度直方图几乎覆盖了整个灰度的取值范围,并且除了个别灰度值的个数较为突出,整个灰度值分布近似于均匀分布,那么这幅图像就具有较大的灰度动态范围和较高的对比度,同时图像的细节更为丰富。仅仅依靠输入图像的直方图信息,就可以得到一个变换函数,利用该变换函数可以将输入图像达到上述效果,因此本发明具体实施方式中采用了上述直方图均衡化作为图像特征提取前的预操作。

    另外,本发明具体实施方式中,所述分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表的步骤包括:

    c1、首先用哈尔小波变换提取各通道的能量均值μ及方差σ,使用k均值聚类方法进行聚类,得到小样本集的圆环图像;

    c2、使用二维gabor滤波提取圆环图像的纹理信息,得到相应的纹理特征参数;其中所述二维gabor滤波的表达式为:

    其中,x1=xcosθ ysinθ,y1=-xsinθ ycosθ;波长λ以像素为单位指定,例如波长取值通常大于等于2,但不能大于输入图像尺寸的五分之一,而θ为方向;

    c3、得到纹理特征参数后,判断其系数的实部和虚部的正负进行量化编码,具体为:

    其中,hre,him分别表示为滤波后特征参数的实部和虚部,fft表示傅里叶变换,ifft表示为傅里叶反变换。

    本发明具体实施方式中,特别使用了二维gabor滤波器来提取图像纹理特征参数。经过检验发现,用gabor函数形成的二维gabor滤波器具有在空间域和频率域同时取得最优局部化的特性,因此能够很好地描述对应于空间频率(尺度)、空间位置及方向选择性的局部结构信息。二维gabor滤波器的频率和方向表示接近人类视觉系统对于频率和方向的表示,因此可以被用于纹理表示和描述。实际上在空域,一个2维的gabor滤波器是一个正弦平面波和高斯核函数的乘积。

    在一维情况中,gabor变换代表着时频分析的优化方法,而二维情况中则是空间频域分析的方法。对于图像来说,窗函数决定了它在空域的局部性,所以可以通过移动窗口的中心來获得不同位置的空间域信息。因此本发明中使用了二维gabor滤波器,相对于某些情况下的一维gabor滤波器而言,能够生成二维空间的特征信息,获得的特征编码表相对于一维图像信号而言,信息量大、区分度高,符合水果自然生长的天然纹理的特点。

    另外,本发明具体实施方式中,所述对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表为:

    c4、t=ta∪tb={x(i,j)|x(i,j)∈ta或x(i,j)∈tb},

    其中t为合并后的双向特征编码表,ta、tb分别为果蒂部分和果脐部分的特征编码表,x(i,j)为双向编码表中第i行第j列对应的值。

    另外,本发明具体实施方式中所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    d1、使用基于汉明距离的分类器进行匹配,其距离计算公式为:

    其中,n为特征编码位数,xor表示异或运算,pj、qj分辨表示纹理特征编码p、q的第j位;

    确定距离hd大于预定第一阈值,则属于不同的果品,确定距离小于预定第一阈值,则属于同一果品。

    所述第一阈值可以根据经验选取,也可以通过机器学习的方式来进行。例如通过一定数量的水果进行编码和识别,调整所述第一阈值的取值,并检查不同阈值下的准确率,由此选择第一阈值的最优解。

    本发明具体实施方式中,对于要识别的水果首先执行前述编码步骤,得到合并后的双向特征编码表,以及果蒂部分特征编码表和果脐部分特征编码表,然后将合并后的双向特征编码表,以及果蒂部分特征编码表和果脐部分特征编码表与存储在存储的各个双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表进行匹配比较,由此进行水果的识别操作。

    另外,本发明具体实施方式中,所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,如果依据果蒂部分特征编码表或果脐部分特征编码表得到的确定距离中的一个小于预定第一阈值,则只需确定距离中的另一个小于第二预定阈值即判断属于同一果品,结束识别。

    如前所述,本发明一个明显的优点在于准确性与容错性都具备,当使用合并后的双向特征编码表进行果纹图谱特征信息的识别,能够准确地识别水果,但是当水果发生了一定的损伤,导致根据双向特征编码表确定的距离hd虽然大于第一预定阈值,但接近所述第一预定阈值时,例如所述确定距离hd与第一阈值之差小于预定差值时,亦即,根据双向特征编码表确定的距离hd比预定第一阈值增大的量较为有限。则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,如果依据果蒂部分特征编码表或果脐部分特征编码表得到的确定距离中的一个小于预定第一阈值,则只需确定距离中的另一个小于第二预定阈值即判断属于同一果品,结束识别。所述第二预定阈值大于第一预定阈值,表明只要果蒂和果脐中只要一个被识别,则可以适度放开另一个的识别要求。

    因此本发明的方法进行特征编码表匹配以识别水果时,可以首先利用合并后的双向特征编码表进行匹配,如果合并后的双向特征编码表能匹配,则说明待识别水果与数据库中所存储的水果完全匹配,能够用于快速匹配;但如果发生了水果的局部外皮擦伤,例如水果果蒂部分矩形图像和果脐部分矩形图像中的一个发生了形状或花纹改变,导致合并后的双向特征编码表不能匹配时,也可以考虑分别利用果蒂部分特征编码表和果脐部分特征编码表来进行识别,当仅有一种特征编码表能够匹配并符合其他条件时,也能被视作识别成功,因此本发明的编码和识别方法还具有一定的容错性,能够兼容检测效率和鲁棒性。

    图1为根据本发明具体实施方式中基于果纹图谱信息的编码和识别装置工作原理的示意图。如图所示,与本发明具体实施方式中的基于果纹图谱信息的编码和识别方法相适应,本发明具体实施方式中还包括一种基于果纹图谱信息的编码和识别装置,所述基于果纹图谱信息的编码和识别装置包括图像获取装置、果纹图谱特征编码生成装置4和果纹图谱特征信息识别装置,其中,

    所述图像获取装置用于夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    所述图谱特征编码生成装置4用于分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;以及用于分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    另外,本发明具体实施方式中,所述所述图像获取装置包括柔性夹持单元1、同步转动单元2、图像获取单元3,其中,

    所述柔性夹持单元具有双向伸缩功能,用于根据不同果品的大小、形状夹持果品的两侧;

    所述同步转动单元能实现180度旋转,用于将夹持住的果品进行转动,以便于获取每个果品的瓜蒂和瓜脐部分两幅图像;

    所述图像获取单元用于每隔一定间隔触发图像获取,用于对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像。

    另外,本发明具体实施方式中,所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则根据预定条件满足时,分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,综合考虑识别结果进一步判断是否属于同一果品。

    因此,图谱特征信息的识别,综合考虑识别结果进一步判断是否属于同一果品。

    本发明的技术效果包括如下:

    1.利用果类自身具有的外表纹理特性建立图谱特征信息,解决果类识别的唯一性和便捷性。所述果纹信息不易遗失,难以篡改,能充分保障水果识别和溯源过程中的准确性。

    2.通过果蒂部分特征编码表和果脐部分特征编码表建立合并后的双向特征编码表,提高识别的准确性,首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,综合考虑识别结果进一步判断是否属于同一果品;因此首先提高了准确度,同时保证了一定的纠错能力。

    3.采用二维gabor函数,其特征参数有频率和方向,提升了纹理提取的精度和编码的效率。

    上述说明示出并描述了本发明的若干优选实施例,但如前所述,应当理解本发明并非局限于本说明书所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本说明书所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。


    技术特征:

    1.一种基于果纹图谱信息的编码和识别方法,其特征在于,该方法包括步骤:

    a、夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    b、分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;

    c、分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    d、对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    2.根据权利要求1中所述的基于果纹图谱信息的编码和识别方法,其特征在于,所述对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像的步骤包括:

    b1、在果蒂部分图像和果脐部分图像中,根据果蒂和果脐的灰度与外围表皮的灰度存在的差异,对果蒂和果脐核心的外边缘进行定位,并提取果蒂和果脐的中心位置;

    b2、分别以提取的果蒂和果脐的中心位置为圆心,以中心到边缘的预定距离r1和r2为半径绘制同心圆,提取两个同心圆之间的圆环为待处理区域;

    b3、对待处理区域进行归一化处理为:

    i(x(r,θ),y(r,θ))→i(r,θ),

    其中,

    其中,i(x,y)表示圆环图像;(r,θ)表示归一化后的极坐标,r∈[0,1],θ∈[0°,360°],当r=0时,表示i(x(r,θ),y(r,θ))为圆环图像内边缘的像素点;当r=1时,表示i(x(r,θ),y(r,θ))为圆环图像外边缘的像素点;对于待处理区域中的每一个点(xi,yi),分别考虑与中心点(x0,y0)的关系,确定其(r,θ),并以r和θ为直角坐标,将圆环图像变换为直角坐标下的矩形图像i(r,θ)。

    3.根据权利要求2中所述的基于果纹图谱信息的编码和识别方法,其特征在于,对于转换后的果蒂部分矩形图像和果脐部分矩形图像,分别进一步采取直方图均衡化来增强图像,用于获得更清晰的纹理;所述采取直方图均衡化为:

    其中n是所述待增强图像像素的总数,n(rk)为图像出现灰度级为rk的像素数,k为灰度级数,t(rk)为对于灰度级rk的转换函数,s(rk)为转换后的灰度级。

    4.根据权利要求1中所述的基于果纹图谱信息的编码和识别方法,其特征在于,所述分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表的步骤包括:

    c1、首先用哈尔小波变换提取各通道的能量均值μ及方差σ,使用k均值聚类方法进行聚类,得到小样本集的圆环图像;

    c2、使用二维gabor滤波提取圆环图像的纹理信息,得到相应的纹理特征参数;其中所述二维gabor滤波的表达式为:

    其中,x1=xcosθ ysinθ,y1=-xsinθ ycosθ;波长λ以像素为单位指定,θ为方向;

    c3、得到纹理特征参数后,判断其系数的实部和虚部的正负进行量化编码,具体为:

    其中,hre,him分别表示为滤波后特征参数的实部和虚部,fft表示傅里叶变换,ifft表示为傅里叶反变换。

    5.根据权利要求1中所述的基于果纹图谱信息的编码和识别方法,其特征在于,所述对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表为:

    c4、t=ta∪tb={x(i,j)|x(i,j)∈ta或x(i,j)∈tb},

    其中t为合并后的双向特征编码表,ta、tb分别为果蒂部分和果脐部分的特征编码表,x(i,j)为双向编码表中第i行第j列对应的值。

    6.根据权利要求1中所述的基于果纹图谱信息的编码和识别方法,其特征在于,所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    d1、使用基于汉明距离的分类器进行匹配,其距离计算公式为:

    其中,n为特征编码位数,xor表示异或运算,pj、qj分辨表示纹理特征编码p、q的第j位;

    确定距离大于预定第一阈值,则属于不同的果品,确定距离小于预定第一阈值,则属于同一果品。

    7.根据权利要求6中所述的基于果纹图谱信息的编码和识别方法,其特征在于,所述对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括步骤:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则如果确定距离与预定第一阈值之差小于预定差值时,则进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,如果依据果蒂部分特征编码表或果脐部分特征编码表得到的确定距离中的一个小于预定第一阈值,则只需确定距离中的另一个小于预定第二阈值即判断属于同一果品,结束识别。

    8.一种基于果纹图谱信息的编码和识别装置,其特征在于,所述装置包括图像获取装置、果纹图谱特征编码生成装置和果纹图谱特征信息识别装置,其中,

    所述图像获取装置用于夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;

    所述图谱特征编码生成装置用于分别对果蒂部分图像和果脐部分图像进行灰度化,并对图像进行归一化处理,转换为果蒂部分矩形图像和果脐部分矩形图像;以及用于分别提取果蒂部分矩形图像和果脐部分矩形图像特征,进行图像特征编码,获得果蒂部分特征编码表和果脐部分特征编码表,对于果蒂部分特征编码表和果脐部分特征编码表进行并操作,获得合并后的双向特征编码表;存储双向特征编码表、果蒂部分特征编码表和果脐部分特征编码表;

    所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。

    9.根据权利要求8中所述的基于果纹图谱信息的编码和识别装置,其特征在于,所述所述图像获取装置包括柔性夹持单元、同步转动单元、图像获取单元,其中,

    所述柔性夹持单元具有双向伸缩功能,用于根据不同果品的大小、形状夹持果品的两侧;

    所述同步转动单元能实现180度旋转,用于将夹持住的果品进行转动,以便于获取每个果品的瓜蒂和瓜脐部分两k65幅图像;

    所述图像获取单元用于每隔一定间隔触发图像获取,用于对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像。

    10.根据权利要求8中所述的基于果纹图谱信息的编码和识别装置,其特征在于,所述果纹图谱特征信息识别装置用于对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别包括:

    首先根据合并后的双向特征编码表进行果纹图谱特征信息的识别,若判断属于同一果品,则结束识别;否则根据预定条件满足时,进一步分别根据果蒂部分特征编码表和果脐部分特征编码表进行果纹图谱特征信息的识别,综合根据识别结果进一步判断是否属于同一果品。

    技术总结
    本发明公开了一种基于果纹图谱信息的编码和识别方法和装置,该方法包括步骤:A、夹持水果并进行转动,对每个待编码水果的果蒂部分和果脐部分分别摄取一幅图像;B、分别对果蒂部分图像和果脐部分图像转换为果蒂部分矩形图像和果脐部分矩形图像;C、分别提取果蒂部分矩形图像和果脐部分矩形图像特征形成特征编码表;D、对待识别的水果进行图像特征编码,将获得的特征编码表与存储的特征编码表进行匹配,用于果纹图谱特征信息的识别。本发明的基于果纹图谱信息的编码和识别方法和装置,基于果品的自然纹路形成特征编码,具有精度高、防篡改等优点。

    技术研发人员:钱建平;吴文斌;史云;余强毅;杨鹏
    受保护的技术使用者:中国农业科学院农业资源与农业区划研究所
    技术研发日:2020.12.09
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-18854.html

    最新回复(0)