一种高炉煤气干法深度净化的方法与流程

    专利2022-07-08  109


    本发明属于煤气脱硫技术领域,特别涉及一种高炉煤气精脱硫工艺。



    背景技术:

    高炉煤气是高炉冶炼过程中副产的一种可燃气体,主要成分为一氧化碳、二氧化碳、氮气、氢气和烃类,同时含有少量h2s、有机硫(主要为cos、cs2)及粉尘;高炉煤气具有热值低、气量大的特点,因此增加了其利用难度;高炉煤气除用于自身系统热风炉作燃料外,还有大量富裕的高炉煤气需要外排,外排的高炉煤气通常用于trt发电、加热炉等。目前高炉煤气脱硫主要采用末端治理技术脱除烟气中的so2,但末端治理存在运行费用高、治理难等特点。随着so2排放浓度越来越严苛的要求,让钢铁行业超低排放势在必行。对高炉煤气超低排放,之前采用的末端治理已经不适应新形势下的环保要求,因此实现源头精脱硫,降低末端硫氧化物的浓度是当前最亟需解决的问题,硫化氢相对已经有较为成熟的脱除方法,而这其中最大的难点就是实现源头气体中有机硫的脱除。

    传统的有机硫脱除方法主要分为干法和湿法。湿法工艺相对较为成熟,但在脱硫过程中使用的设备庞大、脱硫负荷大、传质阻力大,而且还存在硫回收难度高等问题,主要用于粗脱硫,目前主要有化学吸收法、物理吸收法、吸收氧化法。干法脱硫与湿法脱硫相比,工艺流程相对简单、成本低,对无机硫和有机硫的脱除精度相对均较高,目前应用最多的是水解法,但是传统的水解法还需要一定的反应温度等条件,需要有一定的能耗等,因此,非常有必要开发出一种更为高效简便、价格适中的处理新技术。

    如中国专利:cn110643395a“一种高炉煤气精脱硫工艺”中描述的方法是开发一种羰基硫的水解工艺,布袋除尘后的高炉煤气从水解塔顶部进入与水解催化剂在塔内接触,高炉煤气中的有机硫在水解的作用下降解有机硫转化为硫化氢,再进入湿法碱洗脱硫系统。该工艺降低了水解系统造成的阻力损失,该方法的高炉煤气处理后的尾气采用碱洗方式,会产生废水,同时增加生产成本。cn111534335a“一种高炉煤气水解及干法精脱硫处理系统”中所描述的方法是煤气经过水解催化剂后将有机硫转化为无机硫,水解后的高炉煤气再经过吸附塔前端再热器升温进入硫化氢吸附塔,通过塔内催化剂脱除煤气中的无机硫。该方法中需要进行升温才能处理无机硫,也增加了处理的成本投入。



    技术实现要素:

    针对现有技术的不足,本发明提供了一种高炉煤气干法深度净化的方法,本发明方法解决了高炉煤气中硫化物的脱除,特别是有机硫难去除,造成后续利用中二氧化硫超标、湿法脱硫后续工段的设备腐蚀等问题,该方法可用于煤气加热或发电生产中,具有工艺简单、净化完全、硫排放少、运行稳定等优点。

    本发明方法中高炉煤气经过除尘后进入干法吸附-光催化脱硫系统,经初级处理后的高炉煤气进入吸附-光催化精脱硫系统,完成高炉煤气的精脱硫;其中,干法吸附-光催化脱硫系统包括反应腔体,在反应腔体中设置有催化剂,催化剂通过层状网架设置在反应腔体中,反应腔体中设置有多个紫外灯并位于催化剂周围,反应腔体顶部和底部分别设置有进气口和出气口,吸附-光催化精脱硫系统与干法吸附-光催化脱硫系统结构相同,反应温度为30℃-150℃,处理后煤气进入后续煤气管道。

    所述干法吸附-光催化脱硫系统中使用的催化剂为是采用水热法制得的碳材料/卤氧化铋二元复合催化剂,气体空速为500-1200h-1;催化剂采用常规方法制得,例如industrial&engineeringchemistryresearch,2013,52(20),6740-6746,ceramicsinternational,2014,40(7),9003-9008中的方法。

    所述碳材料为活性炭、石墨烯、碳纤维、碳纳米管、富勒烯等中的至少一种,卤氧化铋中卤素为br、cl或i。

    所述吸附-光催化精脱硫系统中使用的催化剂为过渡金属/碳材料/卤氧化铋三元复合催化剂,气体空速为800-1200h-1;催化剂采用常规方法制得,在制得碳材料/卤氧化铋二元复合催化剂后,将其加入过渡金属溶液中,混匀后,将混合悬浮液放置于70-90℃油浴锅中加热搅拌1h后装入水热罐,150℃微波水热40min,待冷却后,离心,取沉淀;用去离子水和无水乙醇交替洗涤3-5次后60℃下真空干燥24h,制得过渡金属/碳材料/卤氧化铋三元复合催化剂,过渡金属溶液为mncl3、fecl3、nicl2、zncl2中的一种,过渡金属溶液的质量浓度为1%-10%。。

    所述紫外灯的光照波长为254nm,光照强度为3mw·cm-2

    本发明方法是针对高炉煤气前端有机硫的脱除处理,目前没有成功的案例实施的现状而提出的,目前部分企业给出的解决方案所涉及到的羰基硫的处理工段均会造成压损大,长期运行会导致运行成本过高,企业难以承受。本发明则是结合了高炉煤气的处理现状,在满足工况的情况下,将光催化的处理方法引入到有机硫的处理系统中,通过改变催化剂的类型,达到有机硫脱除的同时避免水解等方法存在的压损大等问题,使工况达到企业可接受的范围内。

    经过一级吸附-光催化塔处理后的高炉煤气从二级吸附-光催化塔下部进入催化剂内胆,气相中残留的有机硫与催化剂进行接触后得到吸附-光催化去除,净化后的高炉煤气从反应塔的顶部进入无机硫脱除工段后进入后续煤气管网。

    现有技术的脱硫工艺,大部分是后脱硫,本发明的工艺是直接脱除高炉煤气中的有机硫,叫前脱硫工艺,煤气脱硫后再进行燃烧,可以大大降低燃烧烟气的硫氧化物超标的风险;燃烧前脱除工艺简单、占地面积小、处理效率高、运行成本低,没有难处理副产物,大大降低治理成本。

    在高炉煤气净化工艺过程中,高炉煤气经除尘净化后,现有技术主要是增设喷淋塔等湿法脱硫工序脱除煤气中的h2s,但是降低了煤气的热值,而且难以脱除有机硫。采用本发明的方法具有以下优点:(1)使用吸附-光催化剂,能将有机硫彻底的脱除,降低硫化物排放超标风险;(2)以光照的方式来起活反应,反应迅速有效,材料有效抗中毒,可减少抗中毒前处理装置,降低生产成本;(3)二级吸附-光催化塔进一步对有机硫脱除,使脱除更彻底,并后续进入h2s的干法脱除工序,可减少对后续管道设备的腐蚀等,并较好的保留燃气的热值。

    采用本发明的技术方案:高炉煤气进入干法除尘单元除尘后,进入一级吸附-光催化塔进行初步有机硫去除,随后进入二级吸附-光催化塔,脱除残余的有机硫,随后进入高炉煤气利用工段,出口处总硫含量≤10mg/m3,含尘量≤5mg/m3,装置运行稳定。

    附图说明

    图1为本发明高炉煤气净化工艺流程示意图。

    具体实施方式

    下面通过实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。

    实施例1:如图1所示,高炉出来的高炉煤气进入除尘单元后形成气流1,气流1中有硫化氢含量为20mg/m3、有机硫含量为100mg/m3、灰尘浓度10mg/m3;气流1进入干法吸附-光催化脱硫系统,气体空速为1000h-1,反应温度为50℃;所述干法吸附-光催化脱硫系统包括反应腔体,在反应腔体中设置有催化剂,催化剂通过层状网架设置在反应腔体中,反应腔体中设置有多个紫外灯并位于催化剂周围,紫外灯的光照波长为254nm,光照强度为3mw·cm-2,反应腔体顶部和底部分别设置有进气口和出气口,装置内装填有活性炭/biobr二元复合催化剂,在紫外光照下,将高炉煤气中的有机硫转化为h2s、co2和s,形成气流2,气流2中硫化氢的浓度为20mg/m3、有机硫含量20mg/m3、灰尘浓度为5mg/m3;气流2进入二级吸附-光催化塔(吸附-光催化精脱硫系统,结构同干法吸附-光催化脱硫系统),气体空速为800h-1,反应温度为50℃,紫外灯的光照波长为254nm,光照强度为3mw·cm-2,经fe/活性炭/biobr催化剂吸附光催化后,形成气流3进入后续气体利用工段;气流3中h2s含量10mg/m3,有机硫的含量1mg/m3、灰尘浓度小于5mg/m3,装置连续运行3个月以上,后续管道设备未见明显腐蚀,燃机的尾气排放中二氧化硫浓度小于8mg/m3

    实施例2:如图1所示,高炉出来的高炉煤气进入除尘单元后形成气流1,气流1中有硫化氢含量为15mg/m3,有机硫含量为80mg/m3,灰尘浓度8mg/m3;气流1进入一级吸附-光催化塔(干法吸附-光催化脱硫系统),气体空速为1200h-1,反应温度为70℃;装置结构同实施例1,装置内装填有碳纳米管/biocl二元复合催化剂,在紫外光照下,将高炉煤气中的有机硫转化为h2s、co2和s,形成气流2,气流2中硫化氢的浓度为15mg/m3,有机硫含量15mg/m3,灰尘浓度为8mg/m3;气流2进入二级吸附-光催化塔(吸附-光催化精脱硫系统,结构同干法吸附-光催化脱硫系统),气体空速为1000h-1,反应温度为70℃,经mn/碳纳米管/biocl催化剂吸附光催化后,形成气流3进入后续气体利用工段,上述反应中紫外灯的光照波长为254nm,光照强度为3mw·cm-2,气流3中有机硫的含量小于0.8mg/m3,灰尘浓度小于5mg/m3,装置连续运行3个月以上,后续管道设备未见明显腐蚀,燃机的尾气排放中二氧化硫浓度小于5mg/m3

    实施例3:如图1所示,高炉出来的高炉煤气进入除尘单元后形成气流1,气流1中有硫化氢含量为25mg/m3,有机硫含量为150mg/m3,灰尘浓度15mg/m3;气流1进入一级吸附-光催化塔,气体空速为800h-1,反应温度为30℃,装置结构同实施例1,装置内装填有活性炭/bioi二元复合催化剂,在紫外光照下,将高炉煤气中的有机硫转化为h2s、co2和s,形成气流2,气流2中硫化氢的浓度为10mg/m3,有机硫含量25mg/m3,灰尘浓度为5mg/m3;气流2进入二级吸附-光催化塔(吸附-光催化精脱硫系统,结构同干法吸附-光催化脱硫系统),气体空速为1000h-1,反应温度为30℃,经zn/石墨烯/bioi催化剂吸附光催化后,形成气流3进入后续气体利用工段,上述反应中紫外灯的光照波长为254nm,光照强度为3mw·cm-2,气流3中有机硫的含量小于0.5mg/m3,灰尘浓度小于5mg/m3,装置连续运行3个月以上,后续管道设备未见明显腐蚀,燃机的尾气排放中二氧化硫浓度小于5mg/m3

    实施例4:如图1所示,高炉出来的高炉煤气进入除尘单元后形成气流1,气流1中有硫化氢含量为10mg/m3,有机硫含量为200mg/m3,灰尘浓度8mg/m3;气流1进入一级吸附-光催化塔(干法吸附-光催化脱硫系统),气体空速为500h-1,反应温度为130℃,装置结构同实施例1,装置内装填有活性炭/biocl二元复合催化剂,在紫外光照下,将高炉煤气中的有机硫转化为h2s、co2和s,形成气流2,气流2中硫化氢的浓度为5mg/m3,有机硫含量10mg/m3,灰尘浓度为5mg/m3。气流2进入二级吸附-光催化塔(吸附-光催化精脱硫系统,结构同干法吸附-光催化脱硫系统),气体空速为900h-1,反应温度为130℃,经ni/活性炭/bioi催化剂吸附光催化后,形成气流3进入后续气体利用工段,上述反应中紫外灯的光照波长为254nm,光照强度为3mw·cm-2,气流3中有机硫的含量0.1mg/m3,灰尘浓度小于5mg/m3,装置连续运行3个月以上,后续管道设备未见明显腐蚀,燃机的尾气排放中二氧化硫浓度小于6mg/m3


    技术特征:

    1.一种高炉煤气干法深度净化的方法,其特征在于:高炉煤气经过除尘后进入干法吸附-光催化脱硫系统,经初级处理后的高炉煤气进入吸附-光催化精脱硫系统,完成高炉煤气的精脱硫;其中,干法吸附-光催化脱硫系统包括反应腔体,在反应腔体中设置有催化剂,催化剂通过层状网架设置在反应腔体中,反应腔体中设置有多个紫外灯并位于催化剂周围,反应腔体顶部和底部分别设置有进气口和出气口,吸附-光催化精脱硫系统与干法吸附-光催化脱硫系统结构相同,反应温度为30℃-150℃,处理后煤气进入后续煤气管道。

    2.根据权利要求1所述的高炉煤气干法深度净化的方法,其特征在于:干法吸附-光催化脱硫系统中使用的催化剂为是采用水热法制得的碳材料/卤氧化铋二元复合催化剂,气体空速为500-1200h-1

    3.根据权利要求1所述的高炉煤气干法深度净化的方法,其特征在于:吸附-光催化精脱硫系统中使用的催化剂为过渡金属/碳材料/卤氧化铋三元复合催化剂,气体空速为800-1200h-1

    4.根据权利要求1所述的高炉煤气干法深度净化的方法,其特征在于:紫外灯的光照波长为254nm,光照强度为3mw·cm-2

    技术总结
    本发明公开了一种高炉煤气干法深度净化的方法,该方法中高炉煤气经过除尘后进入干法吸附‑光催化脱硫系统,经初级处理后的高炉煤气进入吸附‑光催化精脱硫系统,完成高炉煤气的精脱硫;其中,干法吸附‑光催化脱硫系统包括反应腔体,在反应腔体中设置有催化剂,催化剂通过层状网架设置在反应腔体中,反应腔体中设置有多个紫外灯并位于催化剂周围,反应腔体顶部和底部分别设置有进气口和出气口,吸附‑光催化精脱硫系统与干法吸附‑光催化脱硫系统结构相同,反应温度为30℃‑150℃,处理后煤气进入后续煤气管道;本发明方法解决了现有技术中除尘技术和脱硫技术的脱除不完全,造成后续利用中设备及管道腐蚀,以及燃料气燃烧后的二氧化硫超标等技术问题,可用于高炉煤气净化的工业生产中。

    技术研发人员:王学谦;蔡君;王郎郎
    受保护的技术使用者:昆明理工大学
    技术研发日:2020.12.29
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-18394.html

    最新回复(0)