基于城市主干线车辆排队长度的信号灯调控方法及系统与流程

    专利2022-07-08  109


    本申请涉及智能交通技术领域,特别是涉及基于城市主干线车辆排队长度的信号灯调控方法及系统。



    背景技术:

    本部分的陈述仅仅是提到了与本申请相关的背景技术,并不必然构成现有技术。

    信号灯调控系统对保障交通畅通,提高交通安全,减少交通事故具有重要意义。虽近几年,城市的交通拥堵状况有缓解的趋势,在城市道路不可能无限制增加的情况下,如何优化信号灯控制系统,提高通行效率对缓解交通拥堵、提高出行效率具有重要的意义。

    大数据技术、地理信息系统(gis)、图像处理技术、深度学习等技术的飞速发展,为信号灯的智能调控技术,提供了新的方法和契机。国内外学者利用信号监测技术、视频图像处理技术等设计了智能信号灯调控系统,如姜永强等提出“智能型道路交通信号灯、信号控制系统及信号控制方法”、杨玮等申请了“一种基于信号控制处理技术的智能红绿灯及信号控制方法”、刘佳慧等申请了“一种新型智能交通信号灯及附件智能备用信号设备”等专利。

    排队长度的准确计算既是城市交通拥堵状况评估、交叉口运行评估等的重要指标,又可为信号灯配时方案优化、交通溢流的强制控制等提供依据,对保障城市干线畅通、提高出行者便利具有重要意义。基于卡口、地磁、浮动车等数据发展了不同的排队长度的估算方法,如唐克双等申请的“基于抽样轨迹数据的车辆周期排队长度估计方法及装置”、张萌萌等申请的“基于卡口数据的排队长度计算方法和装置”、曾小清等“一种道路交叉口排队长度计算方法”等等。随摄影机的普及,基于视频图像估算排队长度的方法蓬勃发展,如朱文兴等申请的“基于视频的车辆排队长度动态估计方法”、黄虎等申请的“一种通过图像分析获取排队长度的方法及装置”、王云鹏等申请的“一种基于航拍视频的交叉口车辆排队长度检测方法”等。



    技术实现要素:

    为了解决现有技术的不足,本申请提供了基于城市主干线车辆排队长度的信号灯调控方法及系统;基于实时排队长度的估算,计算通行时长,进行信号灯配时方案的智能化调控,提供一种高效、智能的交叉口信号灯调控系统,保障道路通畅,缓解城市交通拥堵。

    第一方面,本申请提供了基于城市主干线车辆排队长度的信号灯调控方法;

    基于城市主干线车辆排队长度的信号灯调控方法,包括:

    设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    第二方面,本申请提供了基于城市主干线车辆排队长度的信号灯调控系统;

    基于城市主干线车辆排队长度的信号灯调控系统,包括:

    初始化模块,其被配置为:设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    第一计算模块,其被配置为:根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    第二计算模块,其被配置为:根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    信号灯控制模块,其被配置为:设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    第三方面,本申请还提供了一种电子设备,包括:一个或多个处理器、一个或多个存储器、以及一个或多个计算机程序;其中,处理器与存储器连接,上述一个或多个计算机程序被存储在存储器中,当电子设备运行时,该处理器执行该存储器存储的一个或多个计算机程序,以使电子设备执行上述第一方面所述的方法。

    第四方面,本申请还提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成第一方面所述的方法。

    第五方面,本申请还提供了一种计算机程序(产品),包括计算机程序,所述计算机程序当在一个或多个处理器上运行的时候用于实现前述第一方面任意一项的方法。

    与现有技术相比,本申请的有益效果是:

    本申请能够实现通过地理信息与深度学习相结合来计算城市主干线的车辆排队最大长度,进而基于车辆排队最大长度来对信号灯进行调控。

    基于实时排队长度的估算,计算通行时长,进行信号灯配时方案的智能化调控,提供一种高效、智能的交叉口信号灯调控系统,保障道路通畅,缓解城市交通拥堵。

    本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

    附图说明

    构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。

    图1为第一个实施例的方法流程图;

    图2为第一个实施例的交叉口电子地图示意图;

    图3为第一个实施例的摄影机布设示意图;

    图4为第一个实施例的图像预处理流程图;

    图5(a)为第一个实施例的交叉口图像示例示意图;

    图5(b)为第一个实施例的距离标志线布设示意图;

    图5(c)为第一个实施例的感兴趣区域示意图;

    图5(d)为第一个实施例的标志物提取示意图;

    图6为第一个实施例的图像感兴趣矢量图示例图;

    图7为第一个实施例的基于gis和深度学习的排对长度模型构建流程图。

    具体实施方式

    应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

    需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

    在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

    实施例一

    本实施例提供了基于城市主干线车辆排队长度的信号灯调控方法;

    如图1所示,基于城市主干线车辆排队长度的信号灯调控方法,包括:

    s101:设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    s102:根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    s103:根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    s104:设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    作为一个或多个实施例,所述方法,还包括:

    s105:计算左转红灯期间内,左转车道的车辆最大排队长度;所述左转红灯期间,是指左转红灯亮起时刻到左转绿灯亮起时刻期间的时间长度;

    s106:根据初始的红绿灯周期,根据左转红灯期间内左转车道的车辆最大排队长度,计算出左转绿灯时间段内到达车辆数量所需的通行时长;所述左转绿灯时间段,是指左转绿灯亮起时刻到左转绿灯熄灭时刻期间的时间长度;

    根据左转绿灯时间段内到达车辆数量所需的通行时长、左转绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出左转车辆通过路口所需的总时长;

    s107:设置左转绿灯的时间间隔等于左转车辆通过路口所需的总时长。

    作为一个或多个实施例,所述直行车道的车辆最大排队长度与左转车道的车辆最大排队长度的计算过程是一致的。

    其中,所述直行车道的车辆最大排队长度的计算过程包括:

    s1021:获取干线道路的电子地图;如图2所示;

    s1022:在车辆通行路段上游路口布设摄像机,如图3所示,调整摄像机的高度和相机角度,保证视频图像覆盖交叉口停车线、路面所有车辆和车辆排队的最大位置;摄像机的位置添加到电子地图中;

    s1023:获取摄像机采集的图像;对摄像机采集的图像进行预处理得到参考图像;

    s1024:将待处理的图像利用参考图像进行图像校正,使待处理的图像具有地理坐标信息,利用矢量图对待处理图像进行分区得到子区图像,并对每个子区图像进行编码,并对每个子区图像进行图像特征提取;

    s1025:对同一个车道的子区图像的图像特征输入到预先训练后的车辆识别模型中,得到每个车道的车辆识别结果,根据每个车道的车辆识别结果,计算每个车道的排队长度,根据每个车道的排队长度,得到直行车道的车辆最大排队长度。

    进一步地,所述s1021:获取干线道路的电子地图;如图5(a)所示,具体步骤包括:

    获取干线道路的地物存储到数据库中;

    所述地物,包括:道路中心线、车道线、停车线、交叉口、信号灯、绿化带、人行道,将每个地物的地理坐标信息输入属性表,实现数据的入库管理;

    所述地理坐标信息采用2000国家大地坐标系,投影坐标采用2000国家大地坐标系投影3度分带。

    进一步地,如图4所示,所述s1023:获取摄像机采集的图像;对摄像机采集的图像进行预处理;具体步骤包括:

    s10231:在道路中心线上,每间隔设定距离布设距离标志线标志;如图5(b)所示;示例性的,所述设定距离是指10米到20米之间;

    s10232:将摄像机获得的没有地理坐标信息的图像与对应的电子地图进行配准和校正,控制点选择停车线和检测线;

    s10233:对配准和校正后的图像进行感兴趣区域提取,所述感兴趣区域是指路面区域或车辆行驶区域;如图5(c)所示;

    s10234:对感兴趣区域中的标志地物进行提取,所述标志地物包括:交叉口停车线、车道线或距离标志线;对每个车道计算停车线的中心点;

    s10235:以距离标志线和车道线为依据,将感兴趣区域划分为若干个子区域;如图5(d)所示;

    s10236:将从图像中提取的交叉口停车线、车道线、距离标志线和图像分区结果作为参考图像,形成矢量图。图像感兴趣子区域矢量图如图6所示。

    示例性的,所述图像配准校正的校正精度控制在1个像元以下。

    作为一个或多个实施例,所述s1025中,如图7所示,预先训练后的车辆识别模型的获取步骤包括:

    构建卷积神经网络模型;

    构建训练集和测试集;所述训练集和测试集中均包括已知车辆识别结果的图像;

    将训练集输入到卷积神经网络模型中对模型进行训练,进行模型的参数调整;

    将测试集输入到卷积神经网络模型中对模型进行测试,对模型进行验证;

    最后得到预先训练后的车辆识别模型。

    进一步地,所述构建训练集和测试集;具体步骤包括:

    将交叉口道路视频图像数据进行预处理,每隔δt秒提取一幅图像,所提取的摄像图像随时间形成动态的时间序列图像,其中1<δt<10;

    计算图像的对比度、边缘特征;

    根据图像的对比对和边缘特征,对所有的图像进行车辆标注;

    将车辆标注后的图像,按照比例划分为训练集和测试集。

    进一步地,所述s1025:对同一个车道的子区图像的图像特征输入到预先训练后的车辆识别模型中,得到每个车道的车辆识别结果;根据每个车道的车辆识别结果,计算每个车道的排队长度,根据每个车道的排队长度,得到直行车道的车辆最大排队长度;具体包括:

    s10251:当出现子区车辆识别数目为0,或者识别出的车辆的距离超过14m(公交大车一般为12m),当前子图图像的后面子区图像的车辆不作为排对车辆,对识别出车辆的连续子区的最后一辆车辆的车头进行定位,取最后一辆车辆车头中心点到停车线中心点的垂直距离作为排对长度l0;

    s10252:对每隔δt秒获取的时间序列图像进行处理,基于时间序列图像的处理,对车辆识别进行校正,计算当前的排队长度li;

    s10253:当图像获取时间结束时(绿灯亮时),根据时间序列图像处理的校正的车辆识别结果,确定最大的排队长度lm。

    示例性的,s101:设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;具体包括:

    信号灯设置初始的红绿灯周期,假设红灯时间为t1,绿灯周期为t2,左转为t3,黄灯时间为t4。

    示例性的,s103:根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;具体包括:

    t增为初始绿灯时间段内可能到达车辆数量所需的通行时间,t1为初始红灯时间,t2为初始绿灯周期,lm为红灯期间最大排队长度,l0为红灯亮时初始排队长度。

    示例性的,所述根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;具体包括:

    当直行绿灯亮起时,结束视频图像直行车道车辆识别的处理,获取直行车道的最大排队长度,计算直行车辆通过路口所需时间t直(为了计算方便,将不同类型的车辆折合为标准车,即小汽车,长度为5米,停车间隔取1米),

    t直=t加 t排 t增(1)

    t加=v/2a(2)

    t加为车辆启动时的加速所需时间,v为直行车辆通过交叉口的车速(m/s),a为平均加速度,根据通行能力手册,小汽车a为0.6-0.7m/s2

    t排=t间×n(3)

    t间为前后两车接连通过停车线的平均间隔时间,小汽车一般为2.5s;n为根据排队长度计算的车辆数,n=l/6。

    示例性的,s104:设置直行绿灯的时间间隔等于直行车辆通过路口所需的总时长;具体包括:

    根据计算的时间t加、t排、t间,调整直行绿灯时间间隔为t直;调整绿灯时间t应大于行人过路口的最小时间tmin:

    a.在对图像进行预处理时,除提取出的车辆长度信息外,还要提取出红绿灯路口处的人流量信息,并消除环境因素的干扰,计算出行人通过红绿灯路口所需的最短时间tmin,

    lp为行人过街长度(m);vp为行人过街速度,一般为1.0m/s;7为行人在人行横道上的滞留时间的冗余量,防止行人对待通过车辆的干扰;

    b.当tmin<t直时,调整绿灯时间间隔为t直,当tmin>t直时,调整绿灯时间间隔为tmin。

    示例性的,s106:根据初始的红绿灯周期,根据左转红灯期间内左转车道的车辆最大排队长度,计算出左转绿灯时间段内到达车辆数量所需的通行时长;所述左转绿灯时间段,是指左转绿灯亮起时刻到左转绿灯熄灭时刻期间的时间长度;具体包括:

    t左增为原始绿灯时间段内可能到达车辆数量所需的通行时间,t1为原始红灯时间,t3为原始左转绿灯周期,l左m为红灯期间最大排队长度,l左0为红灯亮时初始排队长度。

    示例性的,根据左转绿灯时间段内到达车辆数量所需的通行时长、左转绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出左转车辆通过路口所需的总时长;具体包括:

    当左转绿灯亮起时,启动视频图像左转车道车辆识别的处理,获取左转车道的最大排队长度,计算左转车辆通过路口所需时间t左(为了计算方便,将不同类型的车辆折合为标准车,即小汽车,长度为5米,停车间隔取1米),

    t左=t左加 t左排 t左增(6)

    t左加为车辆启动时的加速所需时间,v左为左转车辆通过交叉口的车速(m/s),a左为平均加速度,根据通行能力手册,a左小汽车为0.6-0.7m/s2

    t左排=t左间×n左(8)

    t左间为前后两车接连通过停车线的平均间隔时间,小汽车一般为3-3.6s;n左为根据排队长度计算的左转的车辆数,l左m为红灯期间最大排队长度。

    根据计算的时间t左加、t左排、t左间,,调整左转绿灯时间间隔为t左。

    当左转红灯亮时(另一个方向的直行绿灯亮),启动另一个方向的图像车辆排队长度识别。

    实施例二

    本实施例提供了基于城市主干线车辆排队长度的信号灯调控系统;

    基于城市主干线车辆排队长度的信号灯调控系统,包括:

    初始化模块,其被配置为:设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    第一计算模块,其被配置为:根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    第二计算模块,其被配置为:根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    信号灯控制模块,其被配置为:设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    此处需要说明的是,上述初始化模块、第一计算模块、第二计算模块和信号灯控制模块对应于实施例一中的步骤s101至s104,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述模块作为系统的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。

    上述实施例中对各个实施例的描述各有侧重,某个实施例中没有详述的部分可以参见其他实施例的相关描述。

    所提出的系统,可以通过其他的方式实现。例如以上所描述的系统实施例仅仅是示意性的,例如上述模块的划分,仅仅为一种逻辑功能划分,实际实现时,可以有另外的划分方式,例如多个模块可以结合或者可以集成到另外一个系统,或一些特征可以忽略,或不执行。

    实施例三

    本实施例还提供了一种电子设备,包括:一个或多个处理器、一个或多个存储器、以及一个或多个计算机程序;其中,处理器与存储器连接,上述一个或多个计算机程序被存储在存储器中,当电子设备运行时,该处理器执行该存储器存储的一个或多个计算机程序,以使电子设备执行上述实施例一所述的方法。

    应理解,本实施例中,处理器可以是中央处理单元cpu,处理器还可以是其他通用处理器、数字信号处理器dsp、专用集成电路asic,现成可编程门阵列fpga或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。

    存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。

    在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。

    实施例一中的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

    本领域普通技术人员可以意识到,结合本实施例描述的各示例的单元及算法步骤,能够以电子硬件或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

    实施例四

    本实施例还提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成实施例一所述的方法。

    以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。


    技术特征:

    1.基于城市主干线车辆排队长度的信号灯调控方法,其特征是,包括:

    设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    2.如权利要求1所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,所述方法,还包括:

    计算左转红灯期间内,左转车道的车辆最大排队长度;所述左转红灯期间,是指左转红灯亮起时刻到左转绿灯亮起时刻期间的时间长度;

    根据初始的红绿灯周期,根据左转红灯期间内左转车道的车辆最大排队长度,计算出左转绿灯时间段内到达车辆数量所需的通行时长;所述左转绿灯时间段,是指左转绿灯亮起时刻到左转绿灯熄灭时刻期间的时间长度;

    根据左转绿灯时间段内到达车辆数量所需的通行时长、左转绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出左转车辆通过路口所需的总时长;

    设置左转绿灯的时间间隔等于左转车辆通过路口所需的总时长。

    3.如权利要求1所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,所述直行车道的车辆最大排队长度的计算过程包括:

    获取干线道路的电子地图;

    在车辆通行路段上游路口布设摄像机,调整摄像机的高度和相机角度,保证视频图像覆盖交叉口停车线、路面所有车辆和车辆排队的最大位置;摄像机的位置添加到电子地图中;

    获取摄像机采集的图像;对摄像机采集的图像进行预处理得到参考图像;

    将待处理的图像利用参考图像进行图像校正,使待处理的图像具有地理坐标信息,利用矢量图对待处理图像进行分区得到子区图像,并对每个子区图像进行编码,并对每个子区图像进行图像特征提取;

    对同一个车道的子区图像的图像特征输入到预先训练后的车辆识别模型中,得到每个车道的车辆识别结果,根据每个车道的车辆识别结果,计算每个车道的排队长度,根据每个车道的排队长度,得到直行车道的车辆最大排队长度。

    4.如权利要求3所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,获取摄像机采集的图像;对摄像机采集的图像进行预处理;具体步骤包括:

    在道路中心线上,每间隔设定距离布设距离标志线标志;

    将摄像机获得的没有地理坐标信息的图像与对应的电子地图进行配准和校正,控制点选择停车线和检测线;

    对配准和校正后的图像进行感兴趣区域提取,所述感兴趣区域是指路面区域或车辆行驶区域;

    对感兴趣区域中的标志地物进行提取,所述标志地物包括:交叉口停车线、车道线或距离标志线;对每个车道计算停车线的中心点;

    以距离标志线和车道线为依据,将感兴趣区域划分为若干个子区域;

    将从图像中提取的交叉口停车线、车道线、距离标志线和图像分区结果作为参考图像,形成矢量图。

    5.如权利要求3所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,预先训练后的车辆识别模型的获取步骤包括:

    构建卷积神经网络模型;

    构建训练集和测试集;所述训练集和测试集中均包括已知车辆识别结果的图像;

    将训练集输入到卷积神经网络模型中对模型进行训练,进行模型的参数调整;

    将测试集输入到卷积神经网络模型中对模型进行测试,对模型进行验证;

    最后得到预先训练后的车辆识别模型;

    或者,

    所述构建训练集和测试集;具体步骤包括:

    将交叉口道路视频图像数据进行预处理,每隔δt秒提取一幅图像,所提取的摄像图像随时间形成动态的时间序列图像,其中1<δt<10;

    计算图像的对比度、边缘特征;

    根据图像的对比对和边缘特征,对所有的图像进行车辆标注;

    将车辆标注后的图像,按照比例划分为训练集和测试集。

    6.如权利要求1所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,

    对同一个车道的子区图像的图像特征输入到预先训练后的车辆识别模型中,得到每个车道的车辆识别结果;根据每个车道的车辆识别结果,计算每个车道的排队长度,根据每个车道的排队长度,得到直行车道的车辆最大排队长度;具体包括:

    当出现子区车辆识别数目为0,或者识别出的车辆的距离超过14m当前子图图像的后面子区图像的车辆不作为排对车辆,对识别出车辆的连续子区的最后一辆车辆的车头进行定位,取最后一辆车辆车头中心点到停车线中心点的垂直距离以及每个相邻中心点之间的距离作为排对长度l0;

    对每隔δt秒获取的时间序列图像进行处理,基于时间序列图像的处理,对车辆识别进行校正,计算当前的排队长度li;

    当绿灯亮时,根据时间序列图像处理的校正的车辆识别结果,确定最大的排队长度lm。

    7.如权利要求1所述的基于城市主干线车辆排队长度的信号灯调控方法,其特征是,获取干线道路的电子地图;具体步骤包括:

    获取干线道路的地物存储到数据库中;所述地物,包括:道路中心线、车道线、停车线、交叉口、信号灯、绿化带、人行道,将每个地物的地理坐标信息输入属性表,实现数据的入库管理;所述地理坐标信息采用2000国家大地坐标系,投影坐标采用2000国家大地坐标系投影3度分带。

    8.基于城市主干线车辆排队长度的信号灯调控系统,其特征是,包括:

    初始化模块,其被配置为:设置初始的红绿灯周期;所述初始的红绿灯周期,包括:初始红灯时长,初始绿灯时长,初始黄灯时长和初始左转红灯时长;

    第一计算模块,其被配置为:根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;

    第二计算模块,其被配置为:根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;所述直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;

    根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;

    信号灯控制模块,其被配置为:设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    9.一种电子设备,其特征是,包括:一个或多个处理器、一个或多个存储器、以及一个或多个计算机程序;其中,处理器与存储器连接,上述一个或多个计算机程序被存储在存储器中,当电子设备运行时,该处理器执行该存储器存储的一个或多个计算机程序,以使电子设备执行上述权利要求1-7任一项所述的方法。

    10.一种计算机可读存储介质,其特征是,用于存储计算机指令,所述计算机指令被处理器执行时,完成权利要求1-7任一项所述的方法。

    技术总结
    本发明公开了基于城市主干线车辆排队长度的信号灯调控方法及系统,根据初始的红绿灯周期,计算直行红灯期间内,直行车道的车辆最大排队长度;所述直行红灯期间,是指直行红灯亮起时刻到直行绿灯亮起时刻期间的时间长度;根据直行红灯期间内直行车道的车辆最大排队长度,计算出直行绿灯时间段内到达车辆数量所需的通行时长;直行绿灯时间段,是指直行绿灯亮起时刻到直行绿灯熄灭时刻期间的时间长度;根据直行绿灯时间段内到达车辆数量所需的通行时长、直行绿灯时间段内排队车辆通过停车线所需的通行时长、和车辆启动时的加速所需时长,计算出直行车辆通过路口所需的总时长;设置交通信号灯直行绿灯的时间间隔等于直行车辆通过路口所需的总时长。

    技术研发人员:张莹莹;冯海霞;李健;王琦;宁二伟;刘凯;王帅琦;田俊;张兴梓;张萌萌
    受保护的技术使用者:山东交通学院
    技术研发日:2020.12.01
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-15158.html

    最新回复(0)