本发明属于能源互联网络系统节能技术领域,具体涉及一种低温冷能循环利用的电力高温超导输送系统。
背景技术:
能源的跨地域传输不可避免,其损耗十分巨大。能源互联网络是由可再生能源、电力、天然气、及传统能源的生产、传输与消费构成的综合系统,它涉及各种能源的互联调配与相互转化,在可以预见的未来,多种能源的互联输配节能技术创新的意义重大。
目前,通过传统特高压输电损耗率约在6~7%,而采用高温超导直流输电技术可使损耗率降低至4%左右。高温超导电缆一般工作在液氮温区,通常需要制取大量液氮为电缆降温,使其工作在超导转变温度以下,因此尽管电力损耗低,但制取并维持液氮温区冷量的低温制冷系统却能耗显著。有学者提出可将液化天然气管道与高温超导电力输送相结合,利用一套低温制冷系统为液化天然气输送系统提供冷量,由液化天然气为高温超导电缆创造低温环境。天然气的液化需要消耗大量的压缩功,如果将液化天然气输送到接收端后,高效回收其气化复温(或直接利用、或注入管网)过程释放的低温冷能,可显著降低液化天然气和高温超导电力联合输送系统的能量损耗,但是目前还没有此低温能量循环利用的文献公开。
技术实现要素:
为了克服上述现有技术的缺点,本发明的目的在于提出一种低温冷能循环利用的电力高温超导输送系统,实现低温液体冷能的循环利用,使高温超导电力输送与天然气远程输送的综合能耗显著降低,提高电力与液化天然气联合输送系统的能源输送效率。
为了实现上述目的,本发明采取如下技术方案:
一种低温冷能循环利用的电力高温超导输送系统,包括带压液氮储罐2,带压液氮储罐2的注液口a通过液氮转注泵3和液氮加注管道lin连接,带压液氮储罐2的进液口d与氮气液化系统1的液氮出口c连接,氮气液化系统1的氮气入口b与氮气进气管道连接,带压液氮储罐2的出液口与液氮增压泵4入口连接,液氮增压泵4出口与高温超导电力与液化天然气联合输送管道7的液氮入口连接,高温超导电力与液化天然气联合输送管道7的液氮出口与天然气液化系统11的液氮入口i连接,天然气液化系统11的氮气出口j经管道与排空系统连接;
天然气液化系统11的天然气入口g与天然气进气管道连接,天然气液化系统11的液化天然气出口h与液化天然气储罐10的进液口连接,液化天然气储罐10的出液口与液化天然气增压泵9入口相连,液化天然气增压泵9出口与高温超导电力与液化天然气联合输送管道7的液化天然气入口相连,高温超导电力与液化天然气联合输送管道7的液化天然气出口与液化天然气液体膨胀机5的入口连接,液化天然气液体膨胀机5的出口与氮气液化系统1的液化天然气入口e连接,氮气液化系统1的天然气出口f经管道与天然气接收管网连接;
高温超导电力与液化天然气联合输送管道7的电缆一端与高温超导电缆第一终端6连接,另一端与高温超导电缆第二终端8连接;
在高温超导电力与液化天然气联合输送管道7内,利用液氮为高温超导电缆提供低温环境和绝缘保护,形成高温超导电力输送系统;液化天然气作为高温超导电力输送系统的外部冷屏,同时实现高温超导电力输送和液化天然气的远程输送;液化天然气输送方向与液氮流向相反。
所述的氮气液化系统1包括氮气压缩机c1、氮气用高温换热器hx1、氮气用中温换热器hx2、氮气用低温换热器hx3及中压氮气膨胀机e1;氮气压缩机c1进气口通过管道与氮气入口b连接,氮气压缩机c1排气口通过管道依次与氮气用高温换热器hx1、氮气用中温换热器hx2、氮气用低温换热器hx3的高压氮气通道侧连接,氮气用低温换热器hx3高压侧液氮出口c与带压液氮储罐2的进液口d连接;在氮气用高温换热器hx1与氮气用中温换热器hx2之间的高压侧氮气管道处,旁通出口与中压氮气膨胀机e1入口相连,中压氮气膨胀机e1出口依次与氮气用中温换热器hx2、氮气用高温换热器hx1的低压氮气侧连接,氮气用高温换热器hx1的低压氮气侧出口与氮气压缩机c1的进气旁通入口连接;液化天然气液体膨胀机5的出口与氮气用低温换热器hx3的液化天然气入口e连接,之后依次与氮气用中温换热器hx2、氮气用高温换热器hx1的天然气侧通道连接,氮气用高温换热器hx1的天然气出口f与天然气接收管网连接。
所述的天然气液化系统11包括天然气压缩机c2、高压氮气膨胀机e2、天然气用高温换热器hx4、天然气用中温换热器hx5、天然气用低温换热器hx6;所述的天然气压缩机c2进气口通过管道与天然气入口g连接,天然气压缩机c2排气口经管道,依次与天然气用高温换热器hx4、天然气用中温换热器hx5、天然气用低温换热器hx6的天然气侧通道连接,天然气用低温换热器hx6的液化天然气出口h经管道与与液化天然气储罐10的进液口连接;高温超导电力与液化天然气联合输送管道7的液氮出口经管道与天然气用低温换热器hx6的液氮入口i连接,天然气用低温换热器hx6的高压液氮出口与天然气用中温换热器hx5的高压氮气入口连接,天然气用中温换热器hx5的高压氮气出口与高压氮气膨胀机e2的入口相连,高压氮气膨胀机e2的出口与天然气用中温换热器hx5的低压氮气入口相连,天然气用中温换热器hx5的低压氮气出口与天然气用高温换热器hx4的低压氮气入口相连,天然气用高温换热器hx4的氮气出口j经管道与排空系统连接。
本发明的有益效果为:
1、本发明高温超导电力与液化天然气联合输送管道可实现液化天然气与高温超导电力的联合远程输送,液氮输送到终端后气化过程释放的低温冷能用于天然气的液化;液化天然气输送到接收终端气化后送入天然气管网,释放的低温冷能用于氮气的液化,低温液体冷能被充分回收循环利用,显著降低了高温超导电力输送系统的低温系统能耗,具有重要的节能意义。
2、本发明提出的低温冷能循环利用的电力高温超导输送系统具备独立的液化天然气与电力高温超导输送功能,由于高温超导电缆的冷却和绝缘由液氮提供,因此当液化天然气停输后,仍能保证电力的高温超导输送;当电力输送中断后,液化天然气也可独立输送,因此其能源输送的模式更加灵活,可实现电力和液化天然气的独立输送。
3、本发明提高温超导电力与液化天然气联合输送管道内的液化天然气和液氮可互为冷源,在远程输送时,只需要对其中一种低温液体进行“充冷”使其过冷,并为另一种低温液体过冷提供冷量。
附图说明
图1为本发明实施例的结构示意图。
图2为氮气液化系统1和天然气液化系统11的结构示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细描述:
参照图1,一种低温冷能循环利用的电力高温超导输送系统,包括带压液氮储罐2,带压液氮储罐2的注液口a通过液氮转注泵3和液氮加注管道lin连接,带压液氮储罐2的进液口d与氮气液化系统1的液氮出口c连接,氮气液化系统1的氮气入口b与氮气进气管道连接,带压液氮储罐2的出液口与液氮增压泵4入口连接,液氮增压泵4出口与高温超导电力与液化天然气联合输送管道7的液氮入口连接,高温超导电力与液化天然气联合输送管道7的液氮出口与天然气液化系统11的液氮入口i连接,天然气液化系统11的氮气出口j经管道与排空系统连接;
天然气液化系统11的天然气入口g与天然气进气管道连接,天然气液化系统11的液化天然气出口h与液化天然气储罐10的进液口连接,液化天然气储罐10的出液口与液化天然气增压泵9入口相连,液化天然气增压泵9出口与高温超导电力与液化天然气联合输送管道7的液化天然气入口相连,高温超导电力与液化天然气联合输送管道7的液化天然气出口与液化天然气液体膨胀机5的入口连接,液化天然气液体膨胀机5的出口与氮气液化系统1的液化天然气入口e连接,氮气液化系统1的天然气出口f经管道与天然气接收管网连接;
高温超导电力与液化天然气联合输送管道7的电缆一端与高温超导电缆第一终端6连接,另一端与高温超导电缆第二终端8连接;
在高温超导电力与液化天然气联合输送管道7内,利用液氮为高温超导电缆提供低温环境和绝缘保护,形成高温超导电力输送系统;液化天然气作为高温超导电力输送系统的外部冷屏,同时实现高温超导电力输送和液化天然气的远程输送;液化天然气输送方向与液氮流向相反。
如图2所示,所述的氮气液化系统1包括氮气压缩机c1、氮气用高温换热器hx1、氮气用中温换热器hx2、氮气用低温换热器hx3及中压氮气膨胀机e1;氮气压缩机c1进气口通过管道与氮气入口b连接,氮气压缩机c1排气口通过管道依次与氮气用高温换热器hx1、氮气用中温换热器hx2、氮气用低温换热器hx3的高压氮气通道侧连接,氮气用低温换热器hx3高压侧液氮出口c与带压液氮储罐2的进液口d连接;在氮气用高温换热器hx1与氮气用中温换热器hx2之间的高压侧氮气管道处,旁通出口与中压氮气膨胀机e1入口相连,中压氮气膨胀机e1出口依次与氮气用中温换热器hx2、氮气用高温换热器hx1的低压氮气侧连接,氮气用高温换热器hx1的低压氮气侧出口与氮气压缩机c1的进气旁通入口连接;液化天然气液体膨胀机5的出口与氮气用低温换热器hx3的液化天然气入口e连接,之后依次与氮气用中温换热器hx2、氮气用高温换热器hx1的天然气侧通道连接,氮气用高温换热器hx1的天然气出口f与天然气接收管网连接。
参照图2,所述的天然气液化系统11包括天然气压缩机c2、高压氮气膨胀机e2、天然气用高温换热器hx4、天然气用中温换热器hx5、天然气用低温换热器hx6;所述的天然气压缩机c2进气口通过管道与天然气入口g连接,天然气压缩机c2排气口经管道,依次与天然气用高温换热器hx4、天然气用中温换热器hx5、天然气用低温换热器hx6的天然气侧通道连接,天然气用低温换热器hx6的液化天然气出口h经管道与与液化天然气储罐10的进液口连接;高温超导电力与液化天然气联合输送管道7的液氮出口经管道与天然气用低温换热器hx6的液氮入口i连接,天然气用低温换热器hx6的高压液氮出口与天然气用中温换热器hx5的高压氮气入口连接,天然气用中温换热器hx5的高压氮气出口与高压氮气膨胀机e2的入口相连,高压氮气膨胀机e2的出口与天然气用中温换热器hx5的低压氮气入口相连,天然气用中温换热器hx5的低压氮气出口与天然气用高温换热器hx4的低压氮气入口相连,天然气用高温换热器hx4的氮气出口j经管道与排空系统连接。
本发明的工作原理为:
系统运行时,首先将液氮通过液氮转注泵3注入带压液氮储罐2中,再被液氮增压泵4加压后送入高温超导电力与液化天然气联合输送管道7的液氮通道内,在液氮的冷却和绝缘保护下,高温超导电缆达到超导态,电力则可以在高温超导电缆第一终端6与高温超导电缆第二终端8之间进行超导输送;液氮流出高温超导电力与液化天然气联合输送管道7后,降压气化并使天然气液化;具体地,高压液氮在天然气用低温换热器hx6内吸收带压天然气低温区热量升温气化,之后在天然气用中温换热器hx5中进一步吸收带压天然气中温区热量,产生中温高压的氮气,之后送入高压氮气膨胀机e2中膨胀降压降温,产生的制冷量再送回至天然气用中温换热器hx5,用于冷却带压的天然气;最后被复温的中温低压氮气进入天然气用高温换热器hx4中被进一步加热至环境温度,后送入氮气排放系统中。
在本系统中,可以充分地利用液氮的冷量,使天然气液化、过冷。被净化预处理过的天然气被天然气压缩机c2压缩后,依次在天然气用高温换热器hx4、天然气用中温换热器hx5、天然气用低温换热器hx6中被返流的液氮冷却、液化、过冷,后送入到液化天然气储罐10中,被液化天然气增压泵9加压后,注入高温超导电力与液化天然气联合输送管道7的液化天然气通道,为液氮和高温超导系统提供冷屏,液化天然气流出高温超导电力与液化天然气联合输送管道7后,先进入液化天然气液体膨胀机5中降压、降温,后送入氮气液化系统的氮气用低温换热器hx3、氮气用中温换热器hx2、氮气用高温换热器hx1,液化天然气由过冷状态复温至饱和状态、再气化复温至环境温度后送入天然气管网中;经氮气压缩机c1压缩后的氮气进入氮气用高温换热器hx1,被返流的低压氮气和低温天然气冷却,之后分为两股,一股在中压氮气膨胀机e1中膨胀降压、降温,之后低温低压的氮气被送入氮气用中温换热器hx2的低压氮气通道,用于冷却另一股中压氮气,最后低压低温的氮气再送入到氮气压缩机c1的入口,进行循环;氮气用高温换热器hx1中被冷却的中压氮气分出另一股,依次在氮气用中温换热器hx2、氮气用低温换热器hx3中被逐渐冷却、液化,后送入带压液氮储罐2内进行存储,进入再一次循环。
当所述低温冷能循环利用的电力高温超导输送系统正常运行后,通过液氮转注泵3进入带压液氮贮罐2的通道被关闭,低温冷量在液氮与液化天然气中被循环利用,系统只需要在两端的液化系统中消耗一定功率来补充低温冷量损失即可。
本实施例是对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,例如在天然气液化端,采用其它形式利用液氮降压、气化过程的吸热能力,使天然气液化;或在氮气液化系统,采用其它利用液化天然气气化冷量的氮气液化方式等,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。
1.一种低温冷能循环利用的电力高温超导输送系统,包括带压液氮储罐(2),其特征在于:带压液氮储罐(2)的注液口a通过液氮转注泵(3)和液氮加注管道lin连接,带压液氮储罐(2)的进液口d与氮气液化系统(1)的液氮出口c连接,氮气液化系统(1)的氮气入口b与氮气进气管道连接,带压液氮储罐(2)的出液口与液氮增压泵(4)入口连接,液氮增压泵(4)出口与高温超导电力与液化天然气联合输送管道(7)的液氮入口连接,高温超导电力与液化天然气联合输送管道(7)的液氮出口与天然气液化系统(11)的液氮入口i连接,天然气液化系统(11)的氮气出口j经管道与排空系统连接;
天然气液化系统(11)的天然气入口g与天然气进气管道连接,天然气液化系统(11)的液化天然气出口h与液化天然气储罐(10)的进液口连接,液化天然气储罐(10)的出液口与液化天然气增压泵(9)入口相连,液化天然气增压泵(9)出口与高温超导电力与液化天然气联合输送管道(7)的液化天然气入口相连,高温超导电力与液化天然气联合输送管道(7)的液化天然气出口与液化天然气液体膨胀机(5)的入口连接,液化天然气液体膨胀机(5)的出口与氮气液化系统(1)的液化天然气入口e连接,氮气液化系统(1)的天然气出口f经管道与天然气接收管网连接;
高温超导电力与液化天然气联合输送管道(7)的电缆一端与高温超导电缆第一终端(6)连接,另一端与高温超导电缆第二终端(8)连接;
在高温超导电力与液化天然气联合输送管道(7)内,利用液氮为高温超导电缆提供低温环境和绝缘保护,形成高温超导电力输送系统;液化天然气作为高温超导电力输送系统的外部冷屏,同时实现高温超导电力输送和液化天然气的远程输送;液化天然气输送方向与液氮流向相反。
2.根据权利要求1所述的一种低温冷能循环利用的电力高温超导输送系统,其特征在于:所述的氮气液化系统(1)包括氮气压缩机(c1)、氮气用高温换热器(hx1)、氮气用中温换热器(hx2)、氮气用低温换热器(hx3)及中压氮气膨胀机(e1);氮气压缩机(c1)进气口通过管道与氮气入口b连接,氮气压缩机(c1)排气口通过管道依次与氮气用高温换热器(hx1)、氮气用中温换热器(hx2)、氮气用低温换热器(hx3)的高压氮气通道侧连接,氮气用低温换热器(hx3)高压侧液氮出口c与带压液氮储罐(2)的进液口d连接;在氮气用高温换热器(hx1)与氮气用中温换热器(hx2)之间的高压侧氮气管道处,旁通出口与中压氮气膨胀机(e1)入口相连,中压氮气膨胀机(e1)出口依次与氮气用中温换热器(hx2)、氮气用高温换热器(hx1)的低压氮气侧连接,氮气用高温换热器(hx1)的低压氮气侧出口与氮气压缩机(c1)的进气旁通入口连接;液化天然气液体膨胀机(5)的出口与氮气用低温换热器(hx3)的液化天然气入口e连接,之后依次与氮气用中温换热器(hx2)、氮气用高温换热器(hx1)的天然气侧通道连接,氮气用高温换热器(hx1)的天然气出口f与天然气接收管网连接。
3.根据权利要求1所述的一种低温冷能循环利用的电力高温超导输送系统,其特征在于:所述的天然气液化系统(11)包括天然气压缩机(c2)、高压氮气膨胀机(e2)、天然气用高温换热器(hx4)、天然气用中温换热器(hx5)、天然气用低温换热器(hx6);所述的天然气压缩机(c2)进气口通过管道与天然气入口g连接,天然气压缩机(c2)排气口经管道,依次与天然气用高温换热器(hx4)、天然气用中温换热器(hx5)、天然气用低温换热器(hx6)的天然气侧通道连接,天然气用低温换热器(hx6)的液化天然气出口h经管道与与液化天然气储罐(10)的进液口连接;高温超导电力与液化天然气联合输送管道(7)的液氮出口经管道与天然气用低温换热器(hx6)的液氮入口i连接,天然气用低温换热器(hx6)的高压液氮出口与天然气用中温换热器(hx5)的高压氮气入口连接,天然气用中温换热器(hx5)的高压氮气出口与高压氮气膨胀机(e2)的入口相连,高压氮气膨胀机(e2)的出口与天然气用中温换热器(hx5)的低压氮气入口相连,天然气用中温换热器(hx5)的低压氮气出口与天然气用高温换热器(hx4)的低压氮气入口相连,天然气用高温换热器(hx4)的氮气出口j经管道与排空系统连接。
技术总结