本发明属于固体酸催化剂领域,更具体地,涉及一种基于二氧化硅气凝胶的纳孔固体酸及其制备方法,并且还涉及该基于二氧化硅气凝胶的纳孔固体酸在催化美拉德反应中间体热解中的用途。
背景技术:
固体酸通常用作碳水化合物的裂解催化剂。固体酸中的酸位点对碳水化合物中的c-o、c-n键等敏感,可催化碳水化合物的裂解、环化和重排等多种反应,产生多种杂环化合物、烷烃或有机酯等。由于固体酸位点和碳水化合物之间的相态差异,导致分子接触困难,因此催化活性极大的受到固体酸微观结构的影响。高孔隙率和/或高比表面积有助于固体酸酸位点的暴露,有利于和碳水化合物分子间的接触,提高催化活性。因此,固体酸多负载于分子筛等多孔结构上。
二氧化硅气凝胶是一种具有极大孔隙率和极高比表面积的材料。固体酸负载于二氧化硅气凝胶上,应当能达到更高的分散性。但由于气凝胶制备工艺的复杂性,以及气凝胶本身机械强度比较差,很少有人做过这样的尝试。
美拉德反应中间体是香烟中的致香物质。通过糖和氨基酸之间发生的非酶棕化反应,也称美拉德反应,可以制备美拉德反应中间体。美拉德反应包括脱水、环化和重排等过程。美拉德反应中间体受热,会释放出糠醛、呋喃等杂环衍生物,以及各种结构的酯类,释放独特的香味。美拉德反应中间体的进一步反应,主要和c-n、c-o键的破坏和重构有关,一般受酸碱的催化作用而加速,因而固体酸的酸位点对美拉德反应也有催化作用。
技术实现要素:
本发明的目的在于克服由于固体酸位点和碳水化合物之间的相态差异导致分子接触困难因而催化活性极大的受到固体酸微观结构影响的问题,提供一种新型的固体酸催化剂,其中采用二氧化硅气凝胶的纳孔结构分散固体酸,这可以极大提高固体酸酸位点的分散性,进一步可有助于提高其对美拉德反应的催化活性。
因此,在一方面,本发明提供了一种基于二氧化硅气凝胶的纳孔固体酸,其特征在于,所述固体酸分散在二氧化硅气凝胶的纳孔结构中,其中所述固体酸与二氧化硅气凝胶的重量比为1:10-100。
在本发明的一个实施方式中,所述固体酸为金属盐类固体酸。
在本发明的一个实施方式中,所述金属盐类固体酸选自金属硫酸盐和金属磷酸盐中的一种或多种。
在本发明的一个实施方式中,所述金属硫酸盐为硫酸铝、硫酸铁、硫酸镍、硫酸锆或其任意组合。
另一方面,本发明还提供了一种制备如上所述的基于二氧化硅气凝胶的纳孔固体酸的方法,其特征在于,所述方法包括以下步骤:(1)将固体酸与硅溶胶接触;(2)用碱性试剂将ph调节至9.0-11.0以形成凝胶;(3)随后将所述凝胶进行超临界干燥;(4)将所得干燥物研磨成粉状,并加入到过硫酸铵溶液中浸泡;以及(5)过滤干燥后在500-800℃下进行烧制,以得到基于二氧化硅气凝胶的纳孔固体酸。
在本发明的一个实施方式中,所述碱性试剂为氨水。
在本发明的另一个实施方式中,在形成所述凝胶后,将所述凝胶进行陈化12-48h,并随后用乙醇溶液浸泡交换。
在本发明的一个实施方式中,所述超临界干燥的步骤在高温高压下进行,并以乙醇作为超临界溶剂。
在本发明的一个实施方式中,所述高温为200-300℃的温度。
另一方面,本发明还提供了如上所述的基于二氧化硅气凝胶的纳孔固体酸在催化美拉德反应中间体热解中的用途。
与现有技术相比,本发明至少具有以下的有益技术效果:
(1)本发明的基于二氧化硅气凝胶的纳孔固体酸相比于常规固体酸具有更高的比表面积和孔体积;(2)本发明的制备方法简单;以及(3)本发明的基于二氧化硅气凝胶的纳孔固体酸相比于常规固体酸对美拉德反应中间体热解具有更高的催化活性,可以促进致香物质的释放。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在详细描述本发明前,应了解,在此使用的术语只在于描述特定的实施方式,而不希望限制本发明的范围,本发明的范围仅由所附权利要求书限定。为了更完全地了解在此描述的本发明,采用以下术语,它们的定义如下所示。除非另外定义,在此使用的所有技术和科学术语具有与本发明所属领域的普通技术人员所理解的相同的含义。
在一方面,本发明提供了一种基于二氧化硅气凝胶的纳孔固体酸,其特征在于,所述固体酸分散在二氧化硅气凝胶的纳孔结构中,其中所述固体酸与二氧化硅气凝胶的重量比为1:10-100。
根据本发明,所述固体酸与二氧化硅气凝胶的重量比可以在1:10-100的范围内进一步选择,例如,所述固体酸与二氧化硅气凝胶的重量比可以为1:15、1:20、1:30、1:50、1:70或1:90等,但不限于此。
根据本发明,对固体酸的种类没有特别的限制,可以为常见的固体酸种类。例如,所述固体酸可以为诸如氧化物类、硫化物、金属盐类或杂多酸类等的固体酸。在本发明的一个优选实施方式中,所述固体酸可以为金属盐类固体酸。进一步地,在本发明的一个优选实施方式中,所述金属盐类固体酸可以选自金属硫酸盐和金属磷酸盐中的一种或多种。更进一步地,所述金属盐中的金属可以为例如fe、al、cu、ni或zr等。更进一步地,本发明中所用的固体酸可以更具体地为硫酸铝、硫酸铁、硫酸镍、硫酸锆或其任意组合(超强酸)。
另一方面,本发明还提供了一种制备如上所述的基于二氧化硅气凝胶的纳孔固体酸的方法,其特征在于,所述方法包括以下步骤:(1)将固体酸与硅溶胶接触;(2)用碱性试剂将ph调节至9.0-11.0(例如9.5、10.0或10.5等)以形成凝胶;(3)随后将所述凝胶进行超临界干燥;(4)将所得干燥物研磨成粉状,并加入到过硫酸铵溶液中浸泡;以及(5)过滤干燥后在500-800℃(例如600℃、650℃或700℃等)下进行烧制,以得到基于二氧化硅气凝胶的纳孔固体酸。
根据本发明的制备方法,步骤(1)中的接触可以通过各种方式进行,例如可以将固体酸与硅溶胶混合后再与例如去离子水配置成溶液,或者可以将固体酸先溶解在例如去离子水中再向其中加入硅溶胶混合,并且所述混合可以在伴随搅拌的条件下进行。
根据本发明的制备方法,在步骤(2)中所用的所述碱性试剂可以本领域中常见的任何碱性试剂,例如所述碱性试剂可以为氨水,更具体地,例如可以为浓度为6mol/l的氨水溶液。另外,在步骤(2)完成后,即在形成所述凝胶后,可以将所述凝胶进行陈化12-48h(例如24h或36h等),并随后用乙醇溶液浸泡交换(可以交换多次,例如4-5次),以置换出体系中的水和氨。
根据本发明的制备方法,步骤(3)中的所述超临界干燥的步骤可以在高温高压下进行,并以乙醇作为超临界溶剂。更具体地,所述高温可以为200-300℃的温度,例如230℃、250℃或280℃等;并且所述高压可以通过高压釜实现。
根据本发明的制备方法,步骤(4)中的加入到过硫酸铵溶液中浸泡可以更具体地为加入到1mol/l的过硫酸铵溶液中浸泡12-48h,例如24h或36h等。
根据本发明的制备方法,步骤(5)的烧制过程可以在管式炉中进行。
另一方面,本发明还提供了如上所述的基于二氧化硅气凝胶的纳孔固体酸在催化美拉德反应中间体热解中的用途。
根据本发明,术语“美拉德反应”亦称非酶棕色化反应,是广泛存在于食品工业的一种非酶褐变,是羰基化合物(例如还原糖类)和氨基化合物(例如氨基酸和蛋白质)间的反应,经过复杂的历程最终生成棕色甚至是黑色的大分子物质类黑精或称拟黑素,故又称羰胺反应;而术语“美拉德反应中间体”是指在美拉德反应过程中的中间产物,并且可以由原材料在一定温度下进行不完全的美拉德反应来获得。
因此,在本发明的一个优选实施方式中,所述美拉德反应中间体可以由氨基酸和糖类物质(二者的摩尔比可以为1:0.5-2,优选为1:1)在50-200℃(例如80℃、100℃、120℃、150℃或180℃等)的条件下进行美拉德反应得到。进一步地,所述美拉德反应可以通过本领域技术人员熟知的方法进行,例如可以通过碱性法进行,即使用碱性催化剂催化上述反应,并在反应结束时加入酸性试剂以调整ph至中性;或可以通过酸性法进行,即使用酸性催化剂催化上述反应,并在反应结束时加入碱性试剂以调整ph至中性。
更进一步地,在本发明的一个优选实施方式中,所述氨基酸可以选自甘氨酸、丙氨酸、精氨酸、谷氨酸、亮氨酸和异亮氨酸中的至少一种;所述糖类物质可以选自葡萄糖、果糖、蔗糖、乳糖、甘露糖和半乳糖中的至少一种。基于上述可选择的具体氨基酸和糖类物质种类,可以理解,本发明的美拉德反应中间体可以由上述氨基酸和糖类物质的任意组合经美拉德反应得到。
本发明人经过研究发现,本发明的基于二氧化硅气凝胶的纳孔固体酸相比于常规固体酸具有更高的比表面积和孔体积;其制备方法简单;并且本发明的基于二氧化硅气凝胶的纳孔固体酸相比于常规固体酸对美拉德反应中间体热解具有更高的催化活性,可以促进致香物质的释放。
以下,将通过实施例对本发明的特定固体酸催化剂的效果进行详细描述。
实施例
实施例1
取3g硫酸镍和4.2g硫酸锆溶于20g去离子水中形成透明溶液,再将150g硅溶胶加入到溶液中。滴加浓度为6mol/l的氨水,调节ph至10.0,以形成凝胶。凝胶陈化24h后,用乙醇浸泡交换4-5次,置换出体系中的水和氨。将凝胶放入高压釜中,在乙醇为超临界溶剂且265℃的条件下,进行超临界干燥,以得到ni、zr负载的二氧化硅气凝胶。将二氧化硅气凝胶研磨成粉状,加入到1mol/l的过硫酸铵溶液中浸泡24小时,过滤滤饼干燥后放在管式炉中,在600℃的条件下烧制,从而得到基于二氧化硅气凝胶的纳孔固体酸。
美拉德反应中间体的合成:取等摩尔量的葡萄糖和丙氨酸,在丙二酸催化作用下,在四倍质量的甲醇溶液中于65℃反应8h。待反应完全后加入碱中和至中性,得到的美拉德粗品经过膜分离机透析法获取分子量为1000-5000da的美拉德反应中间体,然后冷冻干燥,去除其中的溶剂或水分。
比较例1
取3g硫酸镍和4.2g硫酸锆溶于20g去离子水中形成透明溶液,滴加浓度为6mol/l的氨水,调节ph至10.0,以形成凝胶。凝胶陈化24h后,用乙醇浸泡交换4-5次,置换出体系中的水和氨。将凝胶于105℃干燥,并研磨成粉状,加入到1mol/l的过硫酸铵溶液中浸泡24小时,过滤滤饼干燥后放在管式炉中,在600℃的条件下烧制,从而得到固体酸。
美拉德反应中间体的合成方法与实施例1相同。
比较例2
以与实施例1相同的方法进行,不同的是未加入硫酸镍和硫酸锆。
测试例1、bet测试
通过bet比表面积测试法测量气凝胶以及所制备的固体酸的比表面积等相关数据,其结果如下表1所示:
表1
从表1的结果可以看出,比较例1中的固体酸的比表面积为21.795m2/g,孔容为0.079cm3/g,远小于实施例1和比较例2中基于气凝胶的固体酸和气凝胶,并且其综合孔径为13.439nm,也小于上述二者。就微孔结构而言,对比例1的固体酸具有更小的中值微空孔径和最可几微孔孔径,而其微孔体积反而更小,只有气凝胶的0.9%和基于气凝胶的固体酸的18%左右,这说明其微孔量相对于纯二氧化硅气凝胶和气凝胶固体酸低很多,以致其比表面积和微孔体积很小。这也说明了气凝胶分散后,将具有较高的比表面积和孔体积,能更大程度分散催化剂,增加催化剂和反应底物的接触面积,从而更有利于催化裂解。
测试例2、美拉德反应中间体热裂解分析
将实施例1和比较例1中制得的固体酸与美拉德反应中间体混合,即得到催化裂解样品,通过py-gc/ms分析裂解物的成分及其相对含量。具体地,采用cds5250t热解仪和agilent7890a-5975c气质联用仪进行300℃的裂解和分析。称取约1mg样品,置于裂解管中的石英棉上,然后将裂解管放入裂解仪上待裂解。裂解升温程序:初始温度50℃,以30℃/s升至设置热解温度,保持5s。裂解氛围为氦气,气体流量:70ml/min,裂解仪阀箱温度:280℃,裂解仪传输线温度:280℃。gc-ms方法:弹性石英毛细管柱;固定相为5%苯基-95%甲基聚硅氧烷;规格为[30m(长度)×0.25mm(内径)×0.25μm(膜厚)];载气流量,1.0ml/min;分流比,100:1;升温程序,初始温度40℃,保持3min,以10℃/min的速率升至240℃,再以20℃/min的速率升至280℃,保持15min;质谱传输线温度280℃;离子源温度230℃;四极杆温度150℃;质量扫描范围29-450amu。裂解产物结果如下表2-3所示:
表2实施例1中的基于气凝胶的固体酸与美拉德反应中间体的py-gc/ms结果
表3比较例1中的固体酸与美拉德反应中间体的py-gc/ms结果
表2和3分别示出了实施例1和对比例1的裂解气成分及其相对含量。可以看出,表2中的高沸点组分(即保留时间33min左右)含量较低,并且作为致香物质的标志物4h-吡喃-4-酮,2,3-二氢-3,5-二羟基-6-甲基-含量明显提升,由此证明了实施例1中的基于二氧化硅气凝胶的固体酸相比于比较例1中的常规固体酸具有更好的催化活性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
1.一种基于二氧化硅气凝胶的纳孔固体酸,其特征在于,所述固体酸分散在二氧化硅气凝胶的纳孔结构中,其中所述固体酸与二氧化硅气凝胶的重量比为1:10-100。
2.根据权利要求1所述的基于二氧化硅气凝胶的纳孔固体酸,其中,所述固体酸为金属盐类固体酸。
3.根据权利要求2所述的基于二氧化硅气凝胶的纳孔固体酸,其中,所述金属盐类固体酸选自金属硫酸盐和金属磷酸盐中的一种或多种。
4.根据权利要求3所述的基于二氧化硅气凝胶的纳孔固体酸,其中,所述金属硫酸盐为硫酸铝、硫酸铁、硫酸镍、硫酸锆或其任意组合。
5.一种制备权利要求1-4中任一项所述的基于二氧化硅气凝胶的纳孔固体酸的方法,其特征在于,所述方法包括以下步骤:
(1)将固体酸与硅溶胶接触;
(2)用碱性试剂将ph调节至9.0-11.0以形成凝胶;
(3)随后将所述凝胶进行超临界干燥;
(4)将所得干燥物研磨成粉状,并加入到过硫酸铵溶液中浸泡;以及
(5)过滤干燥后在500-800℃下进行烧制,以得到基于二氧化硅气凝胶的纳孔固体酸。
6.根据权利要求5所述的方法,其中,所述碱性试剂为氨水。
7.根据权利要求5所述的方法,其中,在形成所述凝胶后,将所述凝胶进行陈化12-48h,并随后用乙醇溶液浸泡交换。
8.根据权利要求5所述的方法,其中,所述超临界干燥的步骤在高温高压下进行,并以乙醇作为超临界溶剂。
9.根据权利要求8所述的方法,其中,所述高温为200-300℃的温度。
10.根据权利要求1-4中任一项所述的基于二氧化硅气凝胶的纳孔固体酸在催化美拉德反应中间体热解中的用途。
技术总结