实现光子循环增强的多结太阳电池及其制作方法与流程

    专利2022-07-08  111


    本发明涉及一种实现光子循环增强的多结太阳电池及其制作方法。



    背景技术:

    太阳电池是利用光生伏特效应把光能转换成电能的器件,已广泛运用于航天领域、军事领域与民用领域。多结太阳电池,即级联多个子电池对入射光分段转换,是现阶段半导体制造与加工技术制约下提升太阳电池光电转换效率最有效的手段。目前,四结太阳电池在标准空间光谱(am0光谱)下转换效率达到35.2%,在标准地面光谱(am1.5光谱)下约37.4%;五结太阳电池在am0光谱下转换效率为36.0%,在am1.5光谱下转换效率为38.8%;六结太阳电池在am1.5光谱下转换效率为39.2%。可以看出,随着结数的增加太阳电池转换效率得到了提高。但是,材料兼容性矛盾与制备工艺复杂程度随着结数的增加将大幅提升,而转换效率的增量趋微。

    需要指出的是,多结太阳电池转换效率与其理论极限仍有较大差距。对单结太阳电池的细致平衡理论的拓展研究表明,通过能带组合与器件结构的优化设计,双结、三结及四结太阳电池的理论转换效率为45.7%、51.5%及55.3%;同时理论模型指出,在太阳电池器件内部实现最大程度的光子循环(photonrecycling,pr),即除从器件表面出射外,辐射复合产生的光子均将被再次吸收并产生电子空穴对,从而增加光生载流子数量与载流子寿命,是提高太阳电池转换效率的一个关键因素。

    近年来,通过在太阳电池外延层背面蒸镀金属膜层或特殊光学设计的介质膜层,构建背反射层限制辐射复合光子从背面出射,从而增强器件内光子循环,单结太阳电池的转换效率得到显著的提高。对于多结太阳电池,在子电池间插入背反射层,构建光学限制腔增强器件内的光子循环,亦可实现转换效率的提升。但其实现方法存在着两个困难:

    首先,如图1所示,背反射层4必须是高度选择性的,在高效限制顶层子电池1辐射复合光子61(hν=eg1)出射的同时,对低能入射光子52(hν<eg1)无附加吸收,避免对底层子电池2的光学损耗;

    其次,如何在多结太阳电池的子电池间插入背反射层,对器件结构设计与工艺实现均提出了很大的挑战。

    现有技术中,由于需兼顾多结太阳电池器件工艺,子电池间的背反射器或光学限制腔对光子的选择性较差,对辐射复合光子的反射能力与低能入射光子的透过能力偏低,导致多结太阳电池开路电压提升有限而短路电流密度降低,制约着器件转换效率的提升。一个较为有效的手段是,对多结太阳电池各子电池独立进行光学管控设计并分别制备,再将独立制备的子电池通过介质材料进行粘合形成多结太阳电池。该方法在一定程度上可实现较好的光子光控,提升了光子循环效果,但子电池间的物理连接成为制约多结太阳电池器件结构及工作模式的明显的弊端。由于实现方法的先天限制,制备的多结太阳电池只能以四端模式工作,其各子电池处于不同的最大工作点,给后续的使用带来很大的不便。



    技术实现要素:

    本发明的目的在于提供一种实现光子循环增强的多结太阳电池及其制作方法。

    为解决上述问题,本发明提供一种实现光子循环增强的多结太阳电池,包括:

    独立制备的多结太阳电池子电池,所述多结太阳电池的子电池通过图形键合的方式进行级联;

    所述图形键合自然引入的子电池间的空气腔与所述子电池的靠近空气腔表面的光学膜层形成高度选择性的光学限制腔;

    所述图形键合同时完成所述多结太阳电池子电池间的机械连接与电学连接,使级联后的所述多结太阳电池子电池以双端模式工作。

    进一步的,上述实现光子循环增强的多结太阳电池中,所述多结太阳电池内部引入极低折射率n=1的空气层,形成光学限制腔。

    进一步的,上述实现光子循环增强的多结太阳电池中,所述子电池的靠近空气层的表面上蒸镀预设结构的光学膜层

    根据本发明的另一面,还提供一种多结太阳电池的制作方法,包括:

    1)在支撑衬底上分别制备顶层子电池与底层子电池;

    2)分别在各子电池表面光刻栅线图形,蒸镀金属栅线;

    3)对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层;

    4)翻转顶层子电池,通过顶层子电池表面的金属栅线进行图形对准,在预设的温度与压力下进行图形键合;

    5)通过物理或化学的方法移除顶层子电池的支撑衬底,以获得级联的多结太阳电池本体;

    6)在多结太阳电池本体表面制备正面电极;

    7)对正面电极保护后,在多结太阳电池表面蒸镀减反射膜;

    8)在底层子电池的支撑衬底背面蒸镀金属材料,形成背面电极。

    进一步的,上述方法中,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的栅线高度、栅间距、栅高的结构参数,根据金属栅线的体电阻、与子电池表面的接触电阻及收集电流的扩展电阻,以及金属栅线遮挡导致的子电池阴影区域的功率耗散综合确定。

    进一步的,上述方法中,对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层的步骤中,

    所述光学膜层材料选择一种或多种折射率在1.01-1.20、且在多结太阳电池相应波段,并是底层子电池的相应波段无吸收的介质材料。

    进一步的,上述方法中,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的结构参数与多结太阳电池的正面电极保持一致,金属栅线的金属材料根据顶层子电池的材料进行调整,以不超过0.1mωcm2的接触电阻率。

    进一步的,上述方法中,所述光学膜层材料为氧化铪、氧化钽或氧化硅。

    进一步的,上述方法中,所述光学膜层使用双层膜层结构,其中,靠近子电池的表面的光学膜层使用折射率略高的材料,靠近空气的光学膜层使用折射率略低的材料。

    与现有技术相比,本发明通过分别在独立制备的顶层子电池背面与底层子电池表面蒸镀金属栅线后,通过图形键合实现子电池的集成。顶层子电池背面与底层子电池表面的特殊设计的光学膜层与图形键合后自然产生的空气层,形成多结太阳电池器件内部的光学限制腔,增强对子电池间光子入射、透过与反射的管控能力。通过图形键合,子电池在完成物理连接的同时实现了内部的电学级联,使器件可以双端模式输出电能,方便器件的后续使用。本发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池。

    附图说明

    图1为多结太阳电池中光学循环增强实现的原理示意图;

    图2为本发明提供的一种可实现光子循环增强的多结太阳电池的器件结构设计示意图;

    图3为本发明提供的一种可实现光子循环增强的多结太阳电池的物理实现方法流程示意图。

    具体实施方式

    为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

    如图1所示,本发明提供一种实现光子循环增强的多结太阳电池,包括:

    独立制备的多结太阳电池子电池,所述多结太阳电池的子电池通过图形键合的方式进行级联;

    所述图形键合自然引入的子电池间的空气腔与所述子电池的靠近空气腔表面的光学膜层形成高度选择性的光学限制腔,实现对不同能量光子的光学管控,在不影响底层子电池光吸收的前提下,增强对顶层子电池辐射复合光子的反射,增强器件内光子循环效果;

    所述图形键合同时完成所述多结太阳电池子电池间的机械连接与电学连接,使级联后的所述多结太阳电池子电池以双端模式工作。

    具体的,如图2所示,主要包含顶层子电池主体10、顶层子电池背面光学膜层31、底层子电池主体20、底层子电池表面光学膜层32、图形键合金属栅线40、正面电极、背面电极60、减反射膜50等。其中顶层子电池背面光学膜层31、底层子电池表面光学膜层32及图形键合后,顶层子电池主体与底层子电池主体间自然形成的空气腔33,共同构建多结太阳电池内部光学限制腔30。通过对各光学膜层厚度的调整,可对不同能量光子的光学传播行为进行调控,在不影响底层子电池光学吸收的前提下,实现对辐射复合光子的反射,提高光子循环能力。

    本发明的实现光子循环增强的多结太阳电池一实施例中,所述多结太阳电池内部引入极低折射率n=1的空气层,形成光学限制腔,提高顶层子电池背面界面处的反射率,限制子电池辐射复合光子的出射,实现对太阳电池内部光子循环的增强。

    本发明的实现光子循环增强的多结太阳电池一实施例中,所述子电池的靠近空气层的表面上蒸镀预设结构的光学膜层,进一步提高限制腔对光子能量的选择性,实现对低能光子的无损透过,避免对底层子电池吸收谱段的光学损耗。

    根据本发明的另一面,还提供一种多结太阳电池的制作方法,其特征在于包含以下步骤:

    1)在支撑衬底上分别制备顶层子电池与底层子电池;

    2)分别在各子电池表面光刻栅线图形,蒸镀金属栅线;

    3)对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层;

    4)翻转顶层子电池,通过顶层子电池表面的金属栅线进行图形对准,在预设的温度与压力下进行图形键合;

    5)通过物理或化学的方法移除顶层子电池的支撑衬底,以获得级联的多结太阳电池本体;

    6)在多结太阳电池本体表面制备正面电极;

    7)对正面电极保护后,在多结太阳电池表面蒸镀减反射膜;

    8)在底层子电池的支撑衬底背面蒸镀金属材料,形成背面电极。

    在此,本发明通过分别在独立制备的顶层子电池背面与底层子电池表面金属栅线后,通过图形键合工艺实现子电池的集成。通过基于金属栅线的图形键合,自然形成的空气腔可作为顶层子电池的背反射层,并可与顶层子电池背面及底层子电池表面特殊设计的光学介质膜系构建光学限制腔,进一步增强对顶层子电池辐射复合光子的限制能力与入射低能光子的透过能力;在物理连接的同时完成了子电池间电学连接,实现内部级联,使器件可以双端模式输出电能。本发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池,可解决现有技术中存在的缺陷和限制。

    具体的,如图3所示,制作方法包括:

    1)在支撑衬底(101,102)上分别制备多结太阳电池的顶层子电池本体(110)与底层子电池本体(120),其中顶层子电池本体应反向制备,即顶层子电池本体中各功能层的制备或沉积顺序应与最终器件中各功能层的实际顺序相反;

    2)分别在支撑衬底上生长的各子电池表面光刻栅线图形,蒸镀金属栅线(141,142);

    3)通过套刻工艺对蒸镀的金属栅线进行保护后,分别在支撑衬底上生长的各子电池表面蒸镀光学膜层(131,132);

    4)翻转顶层子电池,通过子电池表面的金属栅线(141,142)进行图形对准,并在一定的温度与压力下进行图形键合;

    5)通过物理或化学的方法移除原顶层子电池的支撑衬底(101),获得级联的多结太阳电池本体;

    6)在多结太阳电池本体表面光刻正面电极图形,蒸镀金属材料,形成正面电极(170);

    7)通过套刻工艺对多结太阳电池正面电极进行保护后,在多结太阳电池表面蒸镀减反射膜(150);

    8)在原底层子电池支撑衬底背面蒸镀金属材料,形成背面电极(160)。

    本发明的多结太阳电池的制作方法一实施例中,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的栅线高度、栅间距、栅高的结构参数,根据金属栅线的体电阻、与子电池表面的接触电阻及收集电流的扩展电阻,以及金属栅线遮挡导致的子电池阴影区域的功率耗散综合确定,以降低图形键合金属栅线引入的器件性能损耗。

    本发明的多结太阳电池的制作方法一实施例中,对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层的步骤中,

    所述光学膜层材料选择一种或多种折射率在1.01-1.20、且在多结太阳电池相应波段,并是底层子电池的相应波段无吸收的介质材料。

    在此,子电池表面的光学膜层材料应选择一种或多种折射率接近1.0、且在多结太阳电池相应波段,特别是底层子电池相应波段无吸收的介质材料,其膜层厚度应由顶层子电池辐射复合光子的波长决定。

    本发明的多结太阳电池的制作方法一实施例中,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的结构参数与多结太阳电池的正面电极保持一致,降低金属栅线对底层子电池入射光的二次遮挡,金属栅线的金属材料根据顶层子电池的材料进行调整,实现不超过0.1mωcm2的接触电阻率。

    本发明的多结太阳电池的制作方法一实施例中,所述光学膜层材料为氧化铪(hfox)、氧化钽(taox)或氧化硅(siox),为达到较好的光子能量选择性,所述光学膜层使用双层膜层结构,其中,靠近子电池表面的光学膜层使用折射率略高的材料,靠近空气的光学膜层使用折射率略低的材料。

    具体的,本发明提供一种可实现光子循环增强的多结太阳电池的器件结构设计与物理实现方法,并制备具有光子循环增强的gainp/gaas/ingaasp/ingaas四结太阳电池的具体实施方式作进一步地说明。

    步骤1:通过金属有机物气相沉积的方法,分别在gaas衬底上生长晶格匹配的gainp/gaas双结电池,在inp衬底上生长晶格匹配的ingaasp/ingaas双结电池,其中gainp/gaas双结电池需采用反向生长,即子电池的各功能层的生长顺序应与器件中的实际顺序相反。

    步骤2:分别在生长的gainp/gaas子电池与ingaasp/ingaas子电池表面光刻栅线图形,为避免二次遮挡,栅线图形与最终四结太阳电池器件正面电极图形一致,栅线宽度10μm,栅线间距690μm,栅线高度3μm。采用电子束蒸发在光刻后的子电池表面蒸镀金属,对于gainp/gaas子电池,蒸镀的金属使用pd/ag/au,对于ingaasp/ingaas子电池,蒸镀金属使用augeni/au/ag/au。

    步骤3:通过套刻工艺对子电池表面蒸镀的金属栅线进行保护。在gainp/gaas子电池表面依次蒸镀37.8nm的siox与12.6nm的hfox;在ingaasp/ingaas子电池表面依次蒸镀93.15nm的siox与21.4nm的hfox。

    步骤4:翻转顶层子电池,通过子电池表面的金属栅线进行图形对准,在220℃下进行图形键合,键合过程中待键合样品两端保持4000n的压力。键合完成后形成“gaas衬底/gainp/gaas//ingaasp/ingaas/inp衬底”结构。

    步骤5:使用氨水、双氧水、水的混合液,将gaas生长衬底完全去除,初步获得inp衬底上的gainp/gaas/ingaasp/ingaas四结太阳电池本体。

    步骤6:在四结太阳电池表面光刻正面电极图形,栅线宽度10μm,栅线间距690μm,栅线高度5μm。采用电子束蒸发在光刻后的子电池表面蒸镀金属,金属材料使用augeni/au/ag/au。

    步骤7:通过套刻工艺对四结太阳电池正面电极进行保护。在多结太阳电池表面蒸镀tio/sio双层减反射膜,厚度分别为44.3nm与76.0nm。

    步骤8:在inp衬底背面通过电子束蒸镀augeni/au/ag/au材料,形成背面电极。

    至此,已完成可实现光子循环增强的四结太阳电池的制备。该四结太阳电池通过在器件内部引入空气层,构建高度选择性的光学限制腔,实现对器件内部光子传播的管控,可有效提高四结太阳电池内光子循环效果,实现器件性能的提升。

    综上所述,本发明分别在独立制备的顶层子电池背面与底层子电池表面蒸镀金属栅线后,通过图形键合实现子电池的集成。顶层子电池背面与底层子电池表面的特殊设计的光学膜层与图形键合后自然产生的空气层,形成多结太阳电池器件内部的光学限制腔,增强对子电池间光子入射、透过与反射的管控能力。通过图形键合,子电池在完成物理连接的同时实现了内部的电学级联,使器件可以双端模式输出电能,方便器件的后续使用。本发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池。

    本发明提出了一种实现多结太阳电池中光子循环增强的器件结构设计与物理实现方法,通过基于金属栅线的图形键合,在多结电池内部构建光学限制腔实现多结太阳电池子电池间光子循环增强,从而提高转换效率,本发明通过在多结太阳电池内部构建高度选择性的光学限制腔,实现对顶层子电池辐射复合光子与透射光子的高效管控,提高入射光子能量的利用率,提高多结太阳电池的光电转换效率。本发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池。本发明在实现器件内部高度选择性光学限制腔构建的同时,完成了多结太阳电池子电池间的电学级联,使器件可以双端模式输出电能,保持了器件后续使用的便捷性。

    本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

    显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。


    技术特征:

    1.一种实现光子循环增强的多结太阳电池,其特征在于,包括:

    独立制备的多结太阳电池子电池,所述多结太阳电池的子电池通过图形键合的方式进行级联;

    所述图形键合自然引入的子电池间的空气腔与所述子电池的靠近空气腔表面的光学膜层形成高度选择性的光学限制腔;

    所述图形键合同时完成所述多结太阳电池子电池间的机械连接与电学连接,使级联后的所述多结太阳电池子电池以双端模式工作。

    2.如权利要求1所述的实现光子循环增强的多结太阳电池,其特征在于,所述多结太阳电池内部引入极低折射率n=1的空气层,形成光学限制腔。

    3.如权利要求1所述的实现光子循环增强的多结太阳电池,其特征在于,所述子电池的靠近空气层的表面上蒸镀预设结构的光学膜层。

    4.一种多结太阳电池的制作方法,其特征在于,包括:

    1)在支撑衬底上分别制备顶层子电池与底层子电池;

    2)分别在各子电池表面光刻栅线图形,蒸镀金属栅线;

    3)对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层;

    4)翻转顶层子电池,通过顶层子电池表面的金属栅线进行图形对准,在预设的温度与压力下进行图形键合;

    5)通过物理或化学的方法移除顶层子电池的支撑衬底,以获得级联的多结太阳电池本体;

    6)在多结太阳电池本体表面制备正面电极;

    7)对正面电极保护后,在多结太阳电池表面蒸镀减反射膜;

    8)在底层子电池的支撑衬底背面蒸镀金属材料,形成背面电极。

    5.如权利要求4所述的多结太阳电池的制作方法,其特征在于,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的栅线高度、栅间距、栅高的结构参数,根据金属栅线的体电阻、与子电池表面的接触电阻及收集电流的扩展电阻,以及金属栅线遮挡导致的子电池阴影区域的功率耗散综合确定。

    6.如权利要求4所述的多结太阳电池的制作方法,其特征在于,对蒸镀的金属栅线保护后,分别在顶层子电池与底层子电池的表面蒸镀光学膜层的步骤中,

    所述光学膜层材料选择一种或多种折射率在1.01-1.20、且在多结太阳电池相应波段,并是底层子电池的相应波段无吸收的介质材料。

    7.如权利要求4所述的多结太阳电池的制作方法,其特征在于,分别在各子电池表面光刻栅线图形,蒸镀金属栅线的步骤中,

    所述金属栅线的结构参数与多结太阳电池的正面电极保持一致,金属栅线的金属材料根据顶层子电池的材料进行调整,以不超过0.1mωcm2的接触电阻率。

    8.如权利要求4所述的多结太阳电池的制作方法,其特征在于,所述光学膜层材料为氧化铪、氧化钽或氧化硅。

    9.如权利要求4所述的多结太阳电池的制作方法,其特征在于,所述光学膜层使用双层膜层结构,其中,靠近子电池的表面的光学膜层使用折射率略高的材料,靠近空气的光学膜层使用折射率略低的材料。

    技术总结
    本发明提供一种实现光子循环增强的多结太阳电池及其制作方法,本发明通过分别在独立制备的顶层子电池背面与底层子电池表面蒸镀金属栅线后,通过图形键合实现子电池的集成。顶层子电池背面与底层子电池表面的特殊设计的光学膜层与图形键合后自然产生的空气层,形成多结太阳电池器件内部的光学限制腔,增强对子电池间光子入射、透过与反射的管控能力。通过图形键合,子电池在完成物理连接的同时实现了内部的电学级联,使器件可以双端模式输出电能,方便器件的后续使用。本发明不受太阳电池材料体系限制,可广泛运用于各种多结或叠层太阳电池。

    技术研发人员:李欣益;陆宏波;李戈;张玮;钱子勍;杨瑰婷;杨丞;郑奕
    受保护的技术使用者:上海空间电源研究所
    技术研发日:2020.11.30
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-12608.html

    最新回复(0)