一种电池、电池模组、电池包及汽车的制作方法

    专利2022-07-07  113


    本公开涉及电池领域,尤其涉及一种电池、电池模组、电池包及汽车。



    背景技术:

    为降低电池内阻、提高电池容量,同时降低电池的自动化生产难度;目前,市场上电池在生产过程中,已由传统的在极片上贴单独极耳的方式,转变为对极片进行模切,直接由极片模切后预留的部分形成极耳。

    由于采用了模切形成极耳的方案,极耳的周边会由于模切而留有毛刺;在组成电芯的过程中或者在电池使用的过程中,极耳需要弯折一定角度后才能实现与电极端子的电连接。在弯折的过程中,由于极片(特别是正极片)上毛刺的存在,可能发生毛刺刺穿隔膜的风险,进而导致正负极接触短路,严重影响电池的安全性。

    现有技术中,为了解决上述问题,防止因毛刺刺穿隔膜而发生正负极短路的情况发生,一般在正极片的双面涂布一定厚度的陶瓷涂层,比如勃母石或者三氧化二铝,该陶瓷涂层位于正极片和负极片之间,能够一定程度上防止毛刺刺穿隔膜,降低短路发生的概率。

    在电池的制作过程中,需要先在正极片上涂布勃母石或者三氧化铝,然后在对正极片进行模切,形成极耳。首先,正极片涂布勃母石或三氧化铝,涂布厚度难以控制,并且稳定性差,工艺上难度较高;另外,因为是先涂布再模切,涂布勃母石或三氧化铝后的正极片,在分切时不能产生波浪边,模切参数窗口小,对模切产生不利影响。同时,模切时,边缘还是容易产生焊渣、毛刺等不良情况,焊渣和毛刺依然可能刺穿隔膜与负极片接触,造成电池内部短路,影响电池安全。

    虽然涂布勃母石或三氧化铝能够一定程度上降低毛刺刺穿隔膜的风险,但其防止刺穿短路的能力有限,不能很好的满足人们日益增加的对电池安全性能的高要求。



    技术实现要素:

    本公开的目的在于提供一种能够有效防止毛刺刺穿隔膜、保证电池高安全性的电池、电池模组、电池包及汽车。

    为解决上述技术问题,本公开的技术方案是:

    本公开提供了一种电池,包括正极片、负极片和隔膜,所述隔膜至少部分设置在正极片和负极片之间,所述正极片包括在第二方向相对设置的正极片第一侧和正极片第二侧;所述正极片第一侧设置有正极耳,所述负极片上设置有负极耳;其中,所述正极片上粘贴有绝缘胶带,所述绝缘胶带包括在第二方向相对设置的胶带第一侧和胶带第二侧,所述胶带第一侧与所述正极片第一侧同侧设置;所述正极片第一侧在第二方向位于所述胶带第一侧和胶带第二侧之间,所述胶带第二侧在第二方向位于所述正极片第一侧和正极片第二侧之间;所述正极片包括在第一方向相对设置的正极片第一端和正极片第二端,所述绝缘胶带沿第一方向由所述正极片第一端延伸到所述正极片第二端。

    一些实施例中,所述隔膜包括在第二方向相对设置的隔膜第一侧和隔膜第二侧,所述隔膜包括在第一方向相对设置的隔膜第一端和隔膜第二端;所述隔膜第一侧与所述正极片第一侧同侧设置。

    一些实施例中,所述隔膜第一侧超出所述正极片第一侧设置。

    一些实施例中,所述隔膜第一侧与所述正极片第一侧之间的距离为1-2mm。

    一些实施例中,所述胶带第一侧与所述正极片第一侧之间的距离为1-2mm。

    一些实施例中,所述绝缘胶带的厚度20-30微米。

    一些实施例中,所述正极片邻近所述正极片第一侧的位置涂布有陶瓷涂层,所述陶瓷涂层包括涂层第一侧和涂层第二侧,所述涂层第一侧位于胶带第一侧和胶带第二侧之间,所述胶带第二侧位于涂层第一侧和涂层第二侧之间。

    一些实施例中,所述涂层第二侧与所述胶带第二侧之间的间距为1-2mm。

    一些实施例中,所述正极片上涂覆有正极敷料层,所述正极敷料层邻近所述正极片第一侧的一侧与所述胶带第二侧的距离为0-1mm。

    一些实施例中,所述正极耳由所述正极片经模切得到。

    一些实施例中,所述正极片、负极片和隔膜均为一体连续的片状,所述电池的极芯由所述正极片、负极片和隔膜叠置后卷绕形成。

    一些实施例中,所述隔膜为一体连续的片状,所述正极片为多片,所述负极片为多片,所述电池的极芯由所述隔膜往复折叠并在相邻两层隔膜之间插入一片正极片或一片负极片组成,所述正极片和负极片交替设置。

    一些实施例中,所述隔膜为一体连续的片状,所述正极片为多片,所述负极片为多片,所述电池的极芯由所述隔膜卷绕并在相邻两层隔膜之间插入一片正极片或一片负极片组成,所述正极片和负极片交替设置。

    一些实施例中,所述绝缘胶带为一体连续的片状。

    一些实施例中,所述胶带第一侧与所述隔膜第一侧平齐。

    一些实施例中,所述胶带第一侧与所述隔膜第一侧间隔小于或等于1mm。

    一些实施例中,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一端与所述正极片第一端平齐,所述胶带第二端与所述正极片第二端平齐。

    一些实施例中,所述绝缘胶带沿第二方向的宽度为4-6mm。

    一些实施例中,所述绝缘胶带远离正极片的一面与所隔膜粘贴在一起。

    一些实施例中,所述绝缘胶带与所述隔膜之间的剥离强度大于或等于0.11kgf/cm。

    一些实施例中,所述正极片厚度方向的至少一面粘贴有所述绝缘胶带。

    一些实施例中,所述隔膜第一侧和隔膜第二侧均沿第一方向延伸,所述隔膜第一端和隔膜第二端均沿第二方向延伸。

    一些实施例中,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一侧和胶带第二侧均沿第一方向延伸,所述胶带第一端和胶带第二端均沿第二方向延伸。

    一些实施例中,所述胶带第二侧邻近所述隔膜第二侧设置。

    一些实施例中,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一端与所述正极片第一端对应设置,所述胶带第二端与所述正极片第二端对应设置。

    本公开提供了一种电池模组,包括本公开提供的电池,若干所述电池之间串联和/或并联连接。

    本公开提供了一种电池包,包括本公开提供的电池或包括本公开提供的电池模组。

    本公开提供了一种汽车,包括本公开提供的电池或者本公开提供的电池模组或者本公开提供的电池包。

    附图说明

    图1是本公开一个实施例中,隔膜的结构示意图。

    图2是本公开一个实施例中,未经模切的正极片结构示意图。

    图3是本公开一个实施例中,模切后的正极片结构示意图。

    图4是本公开一个实施例中,模切后的正极片与绝缘胶带整体示意图。

    图5是本公开一个实施例中,隔膜、正极片和绝缘胶带的位置关系示意图。

    图6是本公开一个实施例中,极片卷绕的极芯结构示意图。

    图7是本公开一个实施例中,极片叠置的极芯结构示意图。

    图8是本公开一个实施例中,电池的结构示意图。

    图9是本公开一个实施例中,电池模组结构示意图。

    图10是本公开一个实施例中,电池包结构示意图。

    图11是本公开一个实施例中,汽车结构示意图。

    附图标记包括:

    隔膜10;隔膜第一侧101;隔膜第二侧102;隔膜第一端103;隔膜第二端104;绝缘胶带20;胶带第一侧201;胶带第二侧202;胶带第一端203;胶带第二端204;正极片30;正极片第一侧301;正极片第二侧302;陶瓷涂层303;涂层第一侧3031;涂层第二侧3032;正极敷料层304;正极片第一端305;正极片第二端306;正极耳40;负极片50;负极耳60;单体电池70;端板71;顶盖72;托盘80;吊耳81;电池模组82;底盘90;电池包91。

    具体实施方式

    下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。

    在本公开的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。

    此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

    在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。

    本公开提供了一种电池,如图6或图7所示,包括正极片30、负极片50和隔膜10,隔膜10至少部分设置在正极片30和负极片50之间。如图1、图2和图3所示,正极片30包括在第二方向相对设置的正极片第一侧301和正极片第二侧302,隔膜10包括在第二方向相对设置的隔膜第一侧101和隔膜第二侧102,隔膜第一侧101与正极片第一侧301同侧设置,正极片第一侧301设置有正极耳40,负极片50上设置有负极耳60。

    其中一些实施例中,如图5所示,正极片30包括正极集流体和设置在正极集流体上的正极敷料层304,负极片50包括负极集流体和设置在负极集流体上的负极敷料层;正极片30和负极片50之间通过隔膜10隔离开。

    正极片第一侧301设置有正极耳40,正极耳40的位置与隔膜第一侧101对应,隔膜第一侧101与正极片第一侧301同侧设置。而负极片50上设置有负极耳60,与正极片30对应,负极片50也包括在第二方向相对设置的负极片第一侧和负极片第二侧;负极耳60可以设置在负极片第一侧,也可以设置在负极片第二侧。即,正极耳40和负极耳60在电池上,可以同端也可以异端;与之对应的,用于引出电流的正极端子和负极端子也可以同端设置或者异端设置。

    本公开提供的电池中,如图4和图5所示,正极片30上粘贴有绝缘胶带20,绝缘胶带20包括在第二方向相对设置的胶带第一侧201和胶带第二侧202。其中,正极片第一侧301在第二方向位于胶带第一侧201和胶带第二侧202之间,胶带第二侧202在第二方向位于正极片第一侧301和正极片第二侧302之间。所述正极片30包括在第一方向相对设置的正极片第一端305和正极片第二端306,所述绝缘胶带20包括在第一方向相对设置的胶带第一端203和胶带第二端204,所述隔膜10包括在第一方向相对设置的隔膜第一端103和隔膜第二端104;所述绝缘胶带20沿第一方向由所述正极片第一端305延伸到所述正极片第二端306。

    本公开中,正极耳40由隔膜第一侧101引出,且对于单体电池而言,电极端子也沿第二方向引出,设置在第二方向上的盖板处。

    在本公开的一些实施例中,如图5和图8所示,正极耳40和负极耳60可以同侧引出,也可以两侧引出;即正极耳40和负极耳60可以同位于隔膜第一侧101,也可以是正极耳40位于隔膜第一侧101而负极耳60位于隔膜第二侧102。正极耳40、隔膜第一侧101、胶带第一侧201位于同一侧。如此绝缘胶带20才能有效防止正极耳40周边模切处的毛刺刺破电池隔膜10,导致正负极短路,影响电池安全。与之对应的,正负极电极端子同侧引出时,电极端子设置在与隔膜第一侧101对应的一端盖板处;正负极电极端子两侧引出时,隔膜第一侧101对应的一端和隔膜第二侧102对应的一端均设置盖板,正电极端子由隔膜第一侧101对应的盖板处引出,负电极端子由隔膜第二侧102对应的盖板处引出。

    绝缘胶带20包括胶带第一侧201和胶带第二侧202,同时也包括胶带第一端203和胶带第二端204。其中,胶带第一侧201和胶带第二侧202在第二方向上相对设置,胶带第一端203和胶带第二端204在第一方向相对设置;如图1至图4所示,第二方向为图中的上下方向,第一方向为图中的左右方向。绝缘胶带20沿第一方向粘贴在正极片30上,胶带第一侧201与正极片第一侧301对应设置;即,胶带第一侧201和正极片第一侧301同侧设置。

    一些实施例中,绝缘胶带20选取为矩形片状体,胶带第一侧201、胶带第二侧202、胶带第一端203和胶带第二端204为矩形片状体的四周边侧,如图4所示。胶带第一侧201与正极片第一侧301一致,沿第一方向延伸;胶带第二侧202与正极片第二侧302一致,也沿第一方向延伸;胶带第一端203与正极片第一端305一致,沿第二方向延伸;胶带第二端204与正极片第二端306一致,沿第二方向延伸。

    在本公开中,如图4所示,绝缘胶带20沿第一方向(与正极片30一致,可以是绝缘胶带20的长度方向)由正极片第一端305延伸到正极片第二端306。生产过程中,可以将绝缘胶带20粘贴在正极片第一侧301处,并且由正极片第一端305延伸到正极片第二端306。

    一方面,在极耳模切成型的方案中,需要沿正极片30的长度方向(第一方向)切除所有多余的箔材;如此,模切后的毛刺不仅会存在于正极耳40周边位置处,而且在整个第一方向的正极片第一侧301都可能存在毛刺。现有的正极耳40处局部贴胶的方案,并不能防止正极片第一侧301的其他位置毛刺刺破隔膜10,同样存在短路风险、存在安全性隐患。而本公开中,绝缘胶带20沿第一方向从正极片第一端305延伸到正极片第二端306。同时,正极片第一侧301在第二方向位于胶带第一侧201和胶带第二侧202之间,胶带第二侧202在第二方向位于正极片第一侧301和正极片第二侧302之间;即胶带第一侧201超出正极片第一侧301设置,如此,绝缘胶带20可以将正极片第一侧301完全隔离。当其与正极片30组合时,绝缘胶带20能够全部覆盖正极片第一侧301以及模切后的正极耳40周边;如此,能够阻止正极片第一侧301所有位置的毛刺刺穿隔膜10,降低甚至排除短路风险,提高安全性。

    另一方面,无需将绝缘胶带20的位置与正极耳40的位置逐个进行对应,降低了生产过程中的定位难度,减少了工序,同时也能防止定位不准确,降低不良率及成品因定位不准确而不能起到保护作用的风险。

    总之,本公开提供的电池,粘贴在正极片30上的绝缘胶带20,能够有效防止极片模切后留下的毛刺刺穿隔膜10,降低电芯内部发生毛刺刺穿隔膜10带来的短路风险;并且,该绝缘胶带20粘贴在正极片30上,并且绝缘胶带20沿第一方向由正极片第一端305延伸到正极片第二端306;在制作过程中,无需对正极片30在第一方向上的位置进行定位和控制,降低了制作难度。同时,可以将正极片30和绝缘胶带20的组合,在电芯叠片或卷绕的过程中形成;将绝缘胶带20的设置与电芯的制作工艺完美的组合在一起,减少了工艺步骤;并且可以将极片的模切和绝缘胶带20的设置分离,既不影响极片的模切,也不影响对安全性的保证。

    现有技术中,除极耳位置局部贴胶的方案外,另外一种方案是在正极片30的双面涂布一定厚度的陶瓷涂层303,来实现防毛刺刺破的功能。但是,在生产过程中,需要先在正极片30的双面涂布陶瓷涂层303,再对涂布了陶瓷涂层303的正极片30进行模切,进而得到带有模切成型的正极耳40的正极片30,之后再将正极片30与隔膜10、负极片组合后卷绕或叠片形成单体电池。该过程中,一方面工艺要求高,另一方面在模切过程中,模切参数窗口小,不利于模切;同时,模切后边缘还是会产生部分焊渣或毛刺,而这部分焊渣或毛刺无法被保护,依然会造成短路风险,影响安全性。此外,在涂布陶瓷涂层303的过程中,需要严格控制陶瓷涂层303的厚度,且该控制需要在涂布过程中实时监控和完成;同时,涂布陶瓷涂层303后的正极片30,其模切难度也会有所提升,并且对模切工艺的要求会有所改变;整体对工艺和控制都提出了很高的要求。而在本公开中,绝缘胶布的制作较之涂布陶瓷涂层303而言,相对简单,且厚度容易控制;同时,绝缘胶布的设置可以在正极片30模切完成之后,一方面不影响正极片30的模切过程,减小工艺难度,另一方面可以有效覆盖模切后产生毛刺的位置,降低短路风险,提高安全性。

    本公开的一个实施例中,如图1所示,胶带第一侧201与隔膜第一侧101平齐,该结构为绝缘胶带20与隔膜10配合的理想最佳位置;如此可以完全保护到隔膜10的每一个位置,起到全面防刺破的作用。

    但在具体加工、生产过程中,因考虑到卷绕机纠偏以及绝缘胶带20和隔膜10分切宽度制程中的波动,另外一些实施例中,将胶带第一侧201与隔膜第一侧101间隔一定距离设置,该距离小于或等于1mm。

    就正极片30而言,其宽度直接影响到正极敷料层304的宽度,进而影响到电池的容量;即,宽度越宽、越大的正极片30制备的电池,其整体容量就会越高。反之,在体积一定的情况下,如何能够有效的利用有限体积内的空间,获得更大的容量,是目前电池的一个需要攻克的难题;所以,理论上来说,正极片30上的正极敷料层304是越宽越好。而本公开中,绝缘胶带20粘贴在正极片30上,当其使用到电池中时,绝缘胶带20位于隔膜10与正极片30之间,用于防止正极片30模切后的毛刺刺穿隔膜10,造成正极片30与负极片发生短路接触;绝缘胶带20的宽度过大,在使用过程中,会影响正极敷料层304的宽度,影响电池容量;同时,绝缘胶带20又不能覆盖正极敷料层304,否则会影响电池性能、对正极敷料层304的析锂产生阻碍作用。综上,本公开中,绝缘胶带20的宽度不能过大,否则会覆盖正极敷料层304或者影响电池的容量;也不能过小,否则不能很好的解决本公开要解决的技术问题,起到防刺破的功能。所以,在本公开的一些实施例中,绝缘胶带20沿第二方向的宽度为4mm-6mm。

    为了保证绝缘胶带20与正极片30之间的粘结可靠性,特别是在加工成电池的过程中,对两者之间的粘结可靠性尤其高;所以,本公开中,选择绝缘胶带20与正极片30之间的剥离强度大于或等于0.11kgf/cm。提高绝缘胶带20与正极片30之间的粘性,使两者之间的附着力好,在极芯制作过程中不会发生翘曲变形,在电池中也不会发生脱落。

    在一些实施例中,为降低电池的整体厚度,提高能量密度,选择在正极片30厚度方向的其中一面设置绝缘胶带20,可以是正极片30面向隔膜10的任意一面。

    另外一些实施例中,为提升整体强度,在正极片30厚度方向的两面均设置绝缘胶带20,进一步提高了安全性。

    本公开中,如图1所示,隔膜第一侧101和隔膜第二侧102均沿第一方向延伸,隔膜第一端103和隔膜第二端104均沿第二方向延伸;隔膜第一侧101、隔膜第二侧102、隔膜第一端103和隔膜第二端104,构成隔膜10的周向四边。

    胶带第一侧201和胶带第二侧202均沿第一方向延伸,胶带第一端203和胶带第二端204均沿第二方向延伸。

    正极片第一侧301和正极片第二侧302均沿第一方向延伸,正极片第一端305和正极片第二端306均沿第二方向延伸。

    其中,胶带第二侧202邻近隔膜第二侧102设置。此处“邻近”指的是,与胶带第一侧201相比而言,胶带第二侧202更邻近隔膜第二侧102。

    同时,胶带第一端203与正极片第一端305对应设置,胶带第二端204与正极片第二端306对应设置。

    本公开中,隔膜10为现有技术中常用的隔膜10,其作用主要是将电池的正极片30和负极片分隔开来,防止两极接触造成短路,并且能使电解质中的离子通过;比如,常用的隔膜10主要有聚乙烯膜(pe膜)、聚丙烯膜(pp膜)以及由pe膜和pp膜组合而成的多层结构隔膜10;同时,为了提升隔膜10本身的性能,现有技术中的隔膜10还包括采用相转化法以聚偏氟乙烯(pvdf)为本体聚合物制备的薄膜。

    在本公开中,绝缘胶带20粘贴在正极片30上,其主要作用是用来隔离正极片30和负极片,特别是正极片30和负极片模切后的位置;绝缘胶带20阻挡在正极片30模切位置与负极片之间,用来对其进行绝缘并且防止模切后留下的毛刺刺穿隔膜10,起到保护作用。

    在本公开中,对方向进行了定义,分别为第一方向和第二方向。对于连续片状隔膜10而言,第一方向指的是隔膜10的长度方向,第二方向指的是隔膜10的宽度方向,如图1所示,第一方向为左右方向,第二方向为上下方向。

    一般情况下,极耳(正极耳40或负极耳60)由极片(正极片30或负极片)上引出的方向为第二方向,如图3所示,上下方向为正极耳40的引出方向,即为第二方向,也是正极片30的宽度方向;而与之垂直的方向为第一方向(此处所谓的垂直,指的是正极片30大面所在平面上与第二方向垂直的方向,如图4所示,正极耳40引出方向即上下方向为第二方向,与之垂直的左右方向为第一方向,即正极片30的长度方向)。

    当电芯为卷绕电芯时,一般情况下,隔膜10为连续的一片;此时,第一方向为隔膜10的卷绕方向,片状的隔膜10,左右方向为第一方向,也就是电池隔膜10的卷绕方向;而第二方向为隔膜10的宽度方向。

    从单体电池的角度看,定义单体电池的单体长度方向、单体宽度方向和单体厚度方向;一般情况下,将电极端子的引出方向视为单体长度方向,而将单体电池的大面上与单体长度方向垂直的方向视为单体宽度方向,三维的第三个方向为单体厚度方向;此时,当极耳的引出方向与电极端子的引出方向相同时,则第一方向为单体宽度方向,而第二方向为单体长度方向。

    对于上述方向的定义,正在下文的具体实施中,将结合附图做具体示例说明。

    如图1至图4所示,上下方向(第二方向)上,隔膜10的上侧为隔膜第一侧101,绝缘胶带20的上侧为胶带第一侧201,正极片30的上侧为正极片第一侧301;与之对应的,隔膜10的下侧为隔膜第二侧102,绝缘胶带20的下侧为胶带第二侧202,正极片30的下侧为正极片第二侧302。其中,正极片第一侧301高于胶带第二侧202,正极片第一侧301低于胶带第一侧201,胶带第二侧202高于正极片第二侧302,胶带第二侧202低于正极片第一侧301。

    在本公开提供的电池中,正极片第一侧301为模切后的一侧,即采用较宽的正极片30,对其进行模切操作,模切后形成正极耳40和正极片第一侧301;模切后,正极片第一侧301和正极耳40周边可能因模切形成毛刺,若直接将其与隔膜10和负极片组合形成电芯,毛刺可能会刺穿隔膜10,造成正极片30和负极片短接。因此,在本公开中,绝缘胶带20覆盖正极片第一侧301以及正极耳40的部分,将正极片第一侧301及正极耳40的部分与负极片隔离,防止毛刺刺破隔膜10,提高电池安全性。

    隔膜10包括在第二方向相对设置的隔膜第一侧101和隔膜第二侧102;结合具体示例来看时,如图1和图5所示,上述隔膜第一侧101为隔膜10邻近极耳(本公开中,绝缘胶带20的设置主要是为了解决正极片30模切后毛刺刺穿隔膜10的问题;负极片在一般设计中,其宽度较正极片30宽,模切位置靠上,即使刺破隔膜10,一般也不会发生正负极短路,不会影响安全性能。因此,隔膜第一侧101为隔膜10邻近正极耳40引出位置的一侧)引出位置的一侧,而隔膜第二侧102为与之相对的远离极耳引出位置的另一侧。同时,隔膜10包括在第一方向相对设置的隔膜第一端103和隔膜第二端104;比如在卷绕电芯中,隔膜10的最内端定义为隔膜第一端103,则隔膜10的最外端定义为隔膜第二端104,反之亦然(此处的最内端、最外端是针对卷绕的内圈和外圈而言的,例如从内向外卷绕形成电芯的过程中,起始的位置为最内圈,此处为隔膜10的最内端,也就是隔膜第一端103;而卷绕完成后,结束的位置为最外圈,此处为隔膜10的最外端,也就是隔膜第二端104)。

    对于叠片电池而言,其由多片正极片30、多片负极片和多片电池隔膜10层叠而成;此时,极耳引出的方向为第二方向,第二方向上隔膜10包括隔膜第一侧101和隔膜第二侧102,其中,隔膜第一侧101为邻近极耳引出位置的一侧;在隔膜10大面上与极耳引出的方向垂直的为第一方向,第一方向上隔膜10包括隔膜第一端103和隔膜第二端104(单体宽度方向为第一方向,单体宽度方向上的两端为隔膜第一端103和隔膜第二端104)。

    本公开中,如图3和图4所示,左右方向为第一方向,上下方向为第二方向;正极片第一侧301位于正极片30的上侧,正极片第二侧302位于正极片30的下侧;正极片30的左端为正极片第一端305,正极片30的右端为正极片第二端306。同时,胶带第一侧201位于绝缘胶带20的上侧,胶带第二侧202位于绝缘胶带20的下侧;绝缘胶带20的左端为胶带第一端203,绝缘胶带20的右端为胶带第二端204。

    在本公开的所有附图中,各图片的尺寸或比例关系,并不构成对本公开提供的技术方案的限制。如图5所示,胶带第一端203和胶带第二端204之间的长度,与正极片30或隔膜10之间的比例关系,并不能代表其实际比例关系;本公开所有附图中,展示的仅是各部件之间的位置关系,而不代表具体尺寸或比例关系。如图5所示,隔膜第一侧101比胶带第一侧201更靠上,这在图中是可以显示并表达的;但是,隔膜第一侧101比胶带第一侧201在向上的方向上长多少、其比例关系如何,在图5中并无法显示或表达。如图5所示,胶带第一侧201位于隔膜第一侧101和隔膜第二侧102(图5中并未示出,隔膜第二侧102在图1中有显示,是位于上下方向上隔膜10的最下侧)之间,涂层第一侧3031位于胶带第一侧201和胶带第二侧202之间,胶带第二侧202位于涂层第一侧3031和涂层第二侧3032之间。诸如此类的位置关系,本公开的附图中可以表达;但具体尺寸或比例关系,在本公开的附图中并没有限制。

    一般情况下,为了防止隔膜10变形或其他因素导致收缩造成正极片30与负极片短路,隔膜10一般设计成宽度比正极片30的宽度要宽;至少,隔膜第一侧101要超出正极片第一侧301设置,如图5所示,隔膜第一侧101比正极片第一侧301的高度要高,在上下方向上,隔膜第一侧101高于正极片第一侧301设置。

    为保证电池的综合性能,隔膜第一侧101与正极片第一侧301之间的距离可以优选为1-2mm。正极模切边位于绝缘胶带20上,绝缘胶带20刺穿强度为隔膜10的2~3倍,可减少毛刺刺穿隔膜10的风险,同时避免胶带接触敷料影响电池容量。

    本公开的一个实施例中,胶带第一侧201与正极片第一侧301之间的距离为1-2mm。正极模切边位于绝缘胶带20上,绝缘胶带20刺穿强度为隔膜10的2~3倍,可减少毛刺刺穿隔膜10的风险,同时避免胶带接触敷料影响电池容量。

    本公开的一个实施例中,绝缘胶带20~30微米的厚度,保证胶带的硬度,避免贴胶时胶带褶皱,提高加工能力。

    本公开的一个实施例中,如图3、图4和图5所示,正极片30邻近正极片第一侧301的位置涂布有陶瓷涂层303,所述陶瓷涂层303包括涂层第一侧3031和涂层第二侧3032,所述涂层第一侧3031位于胶带第一侧201和胶带第二侧202之间,所述胶带第二侧202位于涂层第一侧3031和涂层第二侧3032之间。陶瓷涂层经模切后可能产生80~120微米毛刺,很尖锐,隔膜10本体至少一面贴绝缘胶带20,可有效降低毛刺导致隔离膜受损发生的安全风险。

    在一个优选实施方式中,涂层第二侧3032与胶带第二侧202之间的间距为1-2mm,正极模切边与胶带接触,可减少毛刺刺穿隔膜10短路的风险,同时避免胶带接触敷料影响电池容量。

    一些实施例中,所述正极片30上涂覆有正极敷料层304,所述正极敷料层304邻近所述正极片第一侧301的一侧与所述胶带第二侧202的距离为0-1mm,避免胶带接触敷料层30影响电池容量。

    在本公开中,正极耳40由正极片30经模切得到。同时,更优选的,在制备过程中,选取宽度较大的正极片30,经模切形成正极耳40,同时形成正极耳40的一侧为正极片第一侧301。

    本公开的一个实施例中,正极片30、负极片和隔膜10均为一体连续的片状,电池的极芯由正极片30、负极片和隔膜10叠置后卷绕形成。

    如图6所示,卷绕极芯由正极片30、负极片和隔膜10叠置后卷绕形成,在制备过程中,先将正极片30、负极片和隔膜10进行拉伸、放卷纠偏,然后将正极片30、负极片和隔膜10压合在一起并进行卷绕,形成电芯。一般的方案中,先进行上述操作步骤,最后在正极耳40处贴胶,完成隔离;或者在正极片30边缘处直接涂覆陶瓷涂层303;如上文所述,该两种方式都有其缺点。因此,在本公开中,在拉伸、放卷过程中,单独放置一个绝缘胶带20的拉伸、放卷结构,将正极片30、负极片、隔膜10和绝缘胶带20各自拉伸、放卷,然后卷绕形成极芯,在此过程中,绝缘胶带20压合并粘贴在正极片30上。

    在卷绕电芯中,通过连续的隔膜10、正极片30、负极片及绝缘胶带20的设计,可以省去卷绕成极芯后再行对正极耳40处逐一贴胶的步骤,减少了工序,降低了加工难度和成本。

    另一个实施例中,如图7所示,隔膜10为一体连续的片状,正极片30为多片,负极片为多片,电池的极芯由隔膜10往复折叠并在相邻两层隔膜10之间插入一片正极片30或一片负极片组成,正极片30和负极片交替设置。

    另一个实施例中,所述隔膜10为一体连续的片状,所述正极片30为多片,所述负极片为多片,所述电池的极芯由所述隔膜10卷绕并在相邻两层隔膜10之间插入一片正极片30或一片负极片组成,所述正极片30和负极片交替设置。

    在上述两个实施例中,隔膜10为一体连续的片状,可以在正极片30上直接粘贴绝缘胶带20,无需在成型的电芯中逐一对正极耳40进行贴胶处理,减少了工序,降低了加工难度和成本。

    上述三个实施例,分别是卷绕电芯和叠片电芯。其中,叠片电芯非全叠片,而是正极片30和负极片为多片,隔膜10为一体连续的片状,隔膜10连续折叠或卷绕,将多片正极片30或负极片逐一叠置在相邻隔膜10之间,形成电芯,组成电池。

    当然,在一些实施例中,全叠片电芯同样适用上述结构;也能一定程度上降低工序和成本。同时,能够稳定的保证安全性,防止毛刺刺破。

    隔膜第一侧101和隔膜第二侧102在第二方向相对设置,且隔膜第一侧101和隔膜第二侧102均沿第一方向延伸;如图1所示,隔膜第一侧101和隔膜第二侧102在上下方向相对设置,且隔膜第一侧101和隔膜第二侧102均沿左右方向延伸。隔膜第一端103和隔膜第二端104在第一方向相对设置,且隔膜第一端103和隔膜第二端104均沿第二方向延伸;如图1所示,隔膜第一端103和隔膜第二端104在左右方向相对设置,且隔膜第一端103和隔膜第二端104均沿上下方向延伸。

    一般情况下(目前市场上的产品及其制备条件下),隔膜10选取为矩形片状体,隔膜第一侧101、隔膜第二侧102、隔膜第一端103和隔膜第二端104为矩形片状体隔膜10的四周边侧,如图1所示。

    如图8所示,是本公开提供的一种电池(电池单体)。

    本公开还提供了一种电池模组,包括若干上述本公开提供的电池,若干电池之间串联和/或并联连接。一些实施例中,如图9所示,电池模组包括单体电池70、多个单体电池70排布在两个端板71之间,电池模组的上侧由顶盖72封盖固定。

    同时本公开还提供了一种电池包,包括本公开提供的上述电池或至少一个上述电池模组。一些实施例中,如图10所示,电池包包括托盘80和设置在托盘80内的若干个电池模组82;同时,为了方便固定,在托盘80的四周设置有方便将托盘安装车身上的吊耳81。

    本公开一个实施例中,提供了一种汽车,包括若干本公开提供的电池或者本公开提供的电池模组或者本公开提供的电池包。一些实施例中,如图11所示,汽车包括底盘90和设置在底盘上的电池包91。

    综上所述可知本公开乃具有以上所述的优良特性,得以令其在使用上,增进以往技术中所未有的效能而具有实用性,成为一极具实用价值的产品。

    以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的思想和原则之内所作的任何修改、等同替换或改进等,均应包含在本公开的保护范围之内。


    技术特征:

    1.一种电池,包括正极片、负极片和隔膜,所述隔膜至少部分设置在正极片和负极片之间,所述正极片包括在第二方向相对设置的正极片第一侧和正极片第二侧;所述正极片第一侧设置有正极耳,所述负极片上设置有负极耳;其特征在于,所述正极片上粘贴有绝缘胶带,所述绝缘胶带包括在第二方向相对设置的胶带第一侧和胶带第二侧,所述胶带第一侧与所述正极片第一侧同侧设置;所述正极片第一侧在第二方向位于所述胶带第一侧和胶带第二侧之间,所述胶带第二侧在第二方向位于所述正极片第一侧和正极片第二侧之间;所述正极片包括在第一方向相对设置的正极片第一端和正极片第二端,所述绝缘胶带沿第一方向由所述正极片第一端延伸到所述正极片第二端。

    2.根据权利要求1所述的电池,其特征在于,所述隔膜包括在第二方向相对设置的隔膜第一侧和隔膜第二侧,所述隔膜包括在第一方向相对设置的隔膜第一端和隔膜第二端;所述隔膜第一侧与所述正极片第一侧同侧设置。

    3.根据权利要求2所述的电池,其特征在于,所述隔膜第一侧超出所述正极片第一侧设置。

    4.根据权利要求3所述的电池,其特征在于,所述隔膜第一侧与所述正极片第一侧之间的距离为1-2mm。

    5.根据权利要求1所述的电池,其特征在于,所述胶带第一侧与所述正极片第一侧之间的距离为1-2mm。

    6.根据权利要求1所述的电池,其特征在于,所述绝缘胶带的厚度20-30微米。

    7.根据权利要求1所述的电池,其特征在于,所述正极片邻近所述正极片第一侧的位置涂布有陶瓷涂层,所述陶瓷涂层包括涂层第一侧和涂层第二侧,所述涂层第一侧位于胶带第一侧和胶带第二侧之间,所述胶带第二侧位于涂层第一侧和涂层第二侧之间。

    8.根据权利要求7所述的电池,其特征在于,所述涂层第二侧与所述胶带第二侧之间的间距为1-2mm。

    9.根据权利要求1所述的电池,其特征在于,所述正极片上涂覆有正极敷料层,所述正极敷料层邻近所述正极片第一侧的一侧与所述胶带第二侧的距离为0-1mm。

    10.根据权利要求1所述的电池,其特征在于,所述正极耳由所述正极片经模切得到。

    11.根据权利要求1所述的电池,其特征在于,所述正极片、负极片和隔膜均为一体连续的片状,所述电池的极芯由所述正极片、负极片和隔膜叠置后卷绕形成。

    12.根据权利要求1所述的电池,其特征在于,所述隔膜为一体连续的片状,所述正极片为多片,所述负极片为多片,所述电池的极芯由所述隔膜往复折叠并在相邻两层隔膜之间插入一片正极片或一片负极片组成,所述正极片和负极片交替设置。

    13.根据权利要求1所述的电池,其特征在于,所述隔膜为一体连续的片状,所述正极片为多片,所述负极片为多片,所述电池的极芯由所述隔膜卷绕并在相邻两层隔膜之间插入一片正极片或一片负极片组成,所述正极片和负极片交替设置。

    14.根据权利要求11中任意一项所述的电池,其特征在于,所述绝缘胶带为一体连续的片状。

    15.根据权利要求2所述的电池,其特征在于,所述胶带第一侧与所述隔膜第一侧平齐。

    16.根据权利要求2所述的电池,其特征在于,所述胶带第一侧与所述隔膜第一侧间隔小于或等于1mm。

    17.根据权利要求1所述的电池,其特征在于,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一端与所述正极片第一端平齐,所述胶带第二端与所述正极片第二端平齐。

    18.根据权利要求1所述的电池,其特征在于,所述绝缘胶带沿第二方向的宽度为4-6mm。

    19.根据权利要求1所述的电池,其特征在于,所述绝缘胶带远离正极片的一面与所隔膜粘贴在一起。

    20.根据权利要求19所述的电池,其特征在于,所述绝缘胶带与所述隔膜之间的剥离强度大于或等于0.11kgf/cm。

    21.根据权利要求1所述的电池,其特征在于,所述正极片厚度方向的至少一面粘贴有所述绝缘胶带。

    22.根据权利要求2所述的电池,其特征在于,所述隔膜第一侧和隔膜第二侧均沿第一方向延伸,所述隔膜第一端和隔膜第二端均沿第二方向延伸。

    23.根据权利要求1所述的电池,其特征在于,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一侧和胶带第二侧均沿第一方向延伸,所述胶带第一端和胶带第二端均沿第二方向延伸。

    24.根据权利要求2所述的电池,其特征在于,所述胶带第二侧邻近所述隔膜第二侧设置。

    25.根据权利要求1所述的电池,其特征在于,所述绝缘胶带包括在第一方向相对设置的胶带第一端和胶带第二端,所述胶带第一端与所述正极片第一端对应设置,所述胶带第二端与所述正极片第二端对应设置。

    26.一种电池模组,其特征在于,包括若干权利要求1-25任意一项所述的电池,若干所述电池之间串联和/或并联连接。

    27.一种电池包,其特征在于,包括权利要求1-25任意一项所述的电池或包括至少一个权利要求26所述的电池模组。

    28.一种汽车,其特征在于,包括若干权利要求1-25任意一项所述的电池,或者包括权利要求26所述的电池模组,或者包括权利要求27所述的电池包。

    技术总结
    本公开提供了一种电池,包括:正极片、负极片和隔膜,其中,正极片上粘贴有绝缘胶带,所述胶带第一侧与所述正极片第一侧同侧设置;所述正极片第一侧在第二方向位于所述胶带第一侧和胶带第二侧之间,所述胶带第二侧在第二方向位于所述正极片第一侧和正极片第二侧之间;所述绝缘胶带沿第一方向由所述正极片第一端延伸到所述正极片第二端。本公开提供的电池,能够有效防止毛刺刺穿隔膜、保证电池的高安全性。同时,本公开还提供了一种电池模组、电池包及汽车。

    技术研发人员:王建军;惠冰飞;蒋志新;尹小强
    受保护的技术使用者:比亚迪股份有限公司
    技术研发日:2019.09.12
    技术公布日:2021.03.12

    转载请注明原文地址:https://wp.8miu.com/read-12301.html

    最新回复(0)