本发明涉及电池技术领域,特别是涉及一种并联化成装置、并联化成设备以及锂离子电池。
背景技术:
电池化成是电池制备过程中必不可少的步骤,并且也是关乎电池各项性能的关键步骤,电池化成是指对制备得到的电池进行一次小电流的充放电过程,使得电池内部生成稳定的固体电解质界面膜。
在电池在化成时需要将电池一个一个进行夹持,以保证电池的正负极与正负接线柱连接稳定,这种电池的化成操作不仅耗时耗力,而且增加了化成操作所需的人工成本,同时降低了电池的化成效率,并且在化成过程中容易出现电池内气涨鼓壳的不良情况,这对化成形成的固体电解质的界面膜的稳定性影响较大,进而导致电池的合格率较低。
技术实现要素:
本发明的目的是克服现有技术中的不足之处,提供一种能提高电池的生产效率、减少化成时间和提高电池化成的合格率的并联化成装置、并联化成设备以及锂离子电池。
本发明的目的是通过以下技术方案来实现的:
一种并联化成装置,包括至少两个层叠设置的夹持机构,两个所述夹持机构共同用于夹持电池,每一所述夹持机构包括:
安装板,相邻两个所述夹持机构的安装板层叠设置,所述安装板内开设有安装腔、导通槽和滑动槽,所述安装腔与所述导通槽连通;
多个夹持组件,每一所述夹持组件包括第一夹持件和第二夹持件,所述第一夹持件和所述第二夹持件相对设置在所述安装板的两侧,每一所述第一夹持件包括正极柱和负极柱,所述正极柱和所述负极柱均安装于所述安装板上,所述第二夹持件与所述安装板滑动连接,所述第二夹持件的滑动方向与所述导通槽的延伸方向相同,且所述导通槽的开口方向朝向所述安装板设置所述第二夹持件的一侧;
压力调节组件,所述压力调节组件包括压力调节伸缩件和升降调节件,所述压力调节伸缩件位于所述安装腔内并与所述安装板弹性连接,所述压力调节伸缩件部分通过所述导通槽凸出于所述安装板的外围,所述压力调节伸缩件还与所述安装板滑动连接,所述压力调节伸缩件的滑动方向与所述导通槽的延伸方向相同;所述升降调节件包括滑动块和传动组,所述滑动块设置在所述滑动槽处并与所述安装板滑动连接,且所述滑动块与另一层叠设置的所述安装板连接,所述传动组安装在所述安装板上,且所述传动组的动力输出端与所述滑动块连接,所述传动组驱动所述滑动块相对于所述安装板滑动,所述滑动块的滑动方向与所述导通槽的延伸方向相同;
其中,当所述传动组驱动所述滑动块相对于所述安装板沿第一方向滑动时,相邻两个所述安装板相互靠近,所述压力调节伸缩件收缩;当所述传动组驱动所述滑动块相对于所述安装板沿第二方向滑动时,相邻两个所述安装板相互远离,所述压力调节伸缩件伸长。
在其中一个实施例中,所述传动组包括电机、第一带轮、第二带轮、传动带和丝杆副,所述电机安装在所述安装板上,所述第一带轮套设于所述电机的动力输出端,所述第二带轮套设于所述丝杆副上,所述传动带穿设于所述安装板并分别套设于所述第一带轮和所述第二带轮上,所述丝杆副与所述滑动块转动连接。
在其中一个实施例中,所述压力调节伸缩件包括弹性件和压块,所述弹性件设置在所述安装腔中,所述压块位于所述安装腔内,且所述压块部分凸出于所述导通槽,所述弹性件的一端与所述压块连接,所述弹性件的另一端与所述安装腔的内壁连接,所述压块与所述安装板滑动连接。
在其中一个实施例中,所述压块包括卡接部和抵接部,所述卡接部卡接于在所述安装腔中并与所述安装板滑动连接,所述卡接部与所述抵接部连接,所述抵接部位于所述导通槽内,且所述抵接部部分凸出于所述导通槽,所述抵接部与各所述夹持组件的第二夹持件对应设置。
在其中一个实施例中,所述卡接部与所述抵接部为一体成型结构。
在其中一个实施例中,所述导通槽和所述抵接部的数目均为多个,多个所述抵接部一一对应设置于多个所述导通槽内,多个所述抵接部均与所述卡接部连接,且多个所述抵接部与多个所述夹持组件的第二夹持件一一对应设置。
在其中一个实施例中,所述安装板上还开设有多个伸缩槽,每一所述伸缩槽的延伸方向与所述导通槽的延伸方向相同,每一所述伸缩槽的开口方向与所述导通槽的开口方向相同;
每一所述夹持组件的第二夹持件包括夹持块和伸缩件,每一所述夹持组件的第二夹持件的所述夹持块的一端部卡接于相应的所述伸缩槽中并与所述安装板滑动连接,每一所述夹持组件的第二夹持件的所述伸缩件设置在相应的所述伸缩槽中,每一所述夹持组件的第二夹持件的所述伸缩件夹持于所述安装板与相应的所述夹持块之间。
在其中一个实施例中,每一所述夹持组件的第一夹持件还包括绝缘体,每一所述夹持组件的第一夹持件的所述绝缘体夹设于相应的所述正极柱和相应的所述负极柱之间。
一种并联化成设备,包括水平矫正器、壳体和上述任一实施例所述的并联化成装置,至少两个层叠设置的所述夹持机构和所述水平矫正器均设置在所述壳体内,所述水平矫正器与任一所述夹持机构的所述安装板连接,所述水平矫正器用于调整所述安装板的水平度。
一种锂离子电池,采用上述任一实施例所述的并联化成设备化成得到。
与现有技术相比,本发明至少具有以下优点:
1、本发明并联化成装置中,采用至少两个层叠设置的夹持机构对电池进行夹持,避免了电池化成时需要采用夹具一个一个将电池进行固定,耗时耗力,导致人工成本增加和化成效率降低的问题,具体地,将电池摆放于靠近夹持机构的第一夹持件处,并且将正负极耳抵接于第一夹持件上,然后通过另一夹持机构的第二夹持件与第一夹持件对应连接,并且使得压力调节伸缩件抵接于电池上,一方面压力调节伸缩件起到固定电池的作用,与第一夹持件和第二夹持件配合使用提高了电池的生产效率和减少了电池化成时间;另一方面压力调节伸缩件起到挤压电池,辅助排出电池内的气体的作用,当传动组驱动滑动块相对于安装板沿第一方向滑动时,相邻两个安装板相互靠近,压力调节伸缩件收缩,使得电池受到的压力增大;当传动组驱动滑动块相对于安装板沿第二方向滑动时,相邻两个安装板相互远离,压力调节伸缩件伸长,使得电池受到的压力减小进而实现了电池化成时压力的调节,减轻了化成过程中电池内气涨鼓壳的程度,进而提高了电池化成的合格率;
2、本发明并联化成设备中,采用并联化成装置中的至少两个层叠设置的夹持机构实现了电池的快速固定和电池化成压力的调节,并且加入水平矫正器,使得各并联化成装置处于水平状态,避免了并联化成装置倾斜,导致各电池化成压力不均,并且导致并联化成装置对各电池的化成压力调节不准确,降低了化成后的电池一致性,甚至导致电池正负极耳接触不良和电池化成过程中发生电解液漏出,降低了电池化成合格率的问题,提高了化成后电池的一致性和提高了电池化成的合格率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明一实施方式的并联化成装置的结构示意图;
图2为图1所示并联化成装置的局部放大图;
图3为图1所示并联化成装置的另一结构示意图;
图4为图3所示并联化成装置的局部放大图;
图5为图1所示并联化成装置的剖视图;
图6为图4所示并联化成装置的局部放大图;
图7为本发明一实施方式的并联化成设备的结构示意图;
图8为本发明锂离子电池的化成流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请提供一种并联化成装置。上述的并联化成装置包括至少两个层叠设置的夹持机构,两个夹持机构共同用于夹持电池。每一夹持机构包括安装板、多个夹持组件和压力调节组件。相邻两个夹持机构的安装板层叠设置,安装板内开设有安装腔、导通槽和滑动槽,安装腔与导通槽连通。每一夹持组件包括第一夹持件和第二夹持件,第一夹持件和第二夹持件相对设置在安装板的两侧,每一第一夹持件包括正极柱和负极柱,正极柱和负极柱均安装于安装板上,第二夹持件与安装板滑动连接,第二夹持件的滑动方向与导通槽的延伸方向相同,且导通槽的开口方向朝向安装板设置第二夹持件的一侧。压力调节组件包括压力调节伸缩件和升降调节件,压力调节伸缩件位于安装腔内并与安装板弹性连接,压力调节伸缩件部分通过导通槽凸出于安装板的外围,压力调节伸缩件还与安装板滑动连接,压力调节伸缩件的滑动方向与导通槽的延伸方向相同;升降调节件包括滑动块和传动组,滑动块设置在滑动槽处并与安装板滑动连接,且滑动块与另一层叠设置的安装板连接,传动组安装在安装板上,且传动组的动力输出端与滑动块连接,传动组驱动滑动块相对于安装板滑动,滑动块的滑动方向与导通槽的延伸方向相同。其中,当传动组驱动滑动块相对于安装板沿第一方向滑动时,相邻两个安装板相互靠近,压力调节伸缩件收缩;当传动组驱动滑动块相对于安装板沿第二方向滑动时,相邻两个安装板相互远离,压力调节伸缩件伸长。
上述的并联化成装置中,采用至少两个层叠设置的夹持机构对电池进行夹持,避免了电池化成时需要采用夹具一个一个将电池进行固定,耗时耗力,导致人工成本增加和化成效率降低的问题,具体地,并联化成装置中设置了多个夹持组件,其中,将电池摆放于靠近夹持机构的第一夹持件处,并且将正负极耳抵接于第一夹持件上,然后通过另一夹持机构的第二夹持件与第一夹持件对应连接,即实现了一次对多个电池夹持的作用,减少了化成时对电池进行固定的时间,进而提高了电池化成效率,并且使得压力调节伸缩件抵接于电池上,一方面压力调节伸缩件起到固定电池的作用,与第一夹持件和第二夹持件配合使用,提高了电池的固定牢靠性,实现了电池的快速固定,提高了电池的生产效率和减少了电池化成时间;另一方面压力调节伸缩件起到挤压电池,辅助排出电池内的气体的作用,当传动组驱动滑动块相对于安装板沿第一方向滑动时,相邻两个安装板相互靠近,压力调节伸缩件收缩,使得电池受到的压力增大;当传动组驱动滑动块相对于安装板沿第二方向滑动时,相邻两个安装板相互远离,压力调节伸缩件伸长,使得电池受到的压力减小进而实现了电池化成时压力的调节,减轻了化成过程中电池内气涨鼓壳的程度,进而提高了电池化成的合格率。
为了更好地理解本发明的并联化成装置10,以下对本发明的并联化成装置10进行进一步的解释说明。
请一并参阅图1、图4和图5,一实施方式的并联化成装置10包括至少两个层叠设置的夹持机构10a,两个夹持机构10a共同用于夹持电池。每一夹持机构10a包括安装板100、多个夹持组件200和压力调节组件300。相邻两个夹持机构10a的安装板100层叠设置,安装板100内开设有安装腔110、导通槽120和滑动槽130,安装腔110与导通槽120连通。每一夹持组件200包括第一夹持件210和第二夹持件220,第一夹持件210和第二夹持件220相对设置在安装板100的两侧,每一第一夹持件210包括正极柱211和负极柱212,正极柱211和负极柱212均安装于安装板100上,第二夹持件220与安装板100滑动连接,第二夹持件220的滑动方向与导通槽120的延伸方向相同,且导通槽120的开口方向朝向安装板100设置第二夹持件220的一侧。压力调节组件300包括压力调节伸缩件310和升降调节件320,压力调节伸缩件310位于安装腔110内并与安装板100弹性连接,压力调节伸缩件310部分通过导通槽120凸出于安装板100的外围,压力调节伸缩件310还与安装板100滑动连接,压力调节伸缩件310的滑动方向与导通槽120的延伸方向相同;升降调节件320包括滑动块321和传动组322,滑动块321设置在滑动槽130处并与安装板100滑动连接,且滑动块321与另一层叠设置的安装板100连接,传动组320安装在安装板100上,且传动组322的动力输出端与滑动块321连接,传动组322驱动滑动块321相对于安装板100滑动,滑动块321的滑动方向与导通槽120的延伸方向相同。其中,当传动组322驱动滑动块321相对于安装板100沿第一方向滑动时,即当传动组322驱动滑动块321相对于安装板100沿a方向滑动时,相邻两个安装板100相互靠近,压力调节伸缩件310收缩;当传动组322驱动滑动块321相对于安装板100沿第二方向滑动时,即当传动组322驱动滑动块321相对于安装板100沿b方向滑动时,相邻两个安装板100相互远离,压力调节伸缩件310伸长。
上述的并联化成装置10中,采用至少两个层叠设置的夹持机构10a对电池进行夹持,避免了电池化成时需要采用夹具一个一个将电池进行固定,耗时耗力,导致人工成本增加和化成效率降低的问题,具体地,将电池摆放于靠近夹持机构10a的第一夹持件210处,并且将正负极耳抵接于第一夹持件210上,然后通过另一夹持机构10a的第二夹持件220与第一夹持件210对应连接,并且使得压力调节伸缩件310抵接于电池上,一方面压力调节伸缩件310起到固定电池的作用,与第一夹持件210和第二夹持件220配合使用提高了电池的生产效率和减少了电池化成时间;另一方面压力调节伸缩件310起到挤压电池,辅助排出电池内的气体的作用,当传动组322驱动滑动块321相对于安装板100沿第一方向滑动时,相邻两个安装板100相互靠近,压力调节伸缩件310收缩,使得电池受到的压力增大;当传动组322驱动滑动块321相对于安装板100沿第二方向滑动时,相邻两个安装板100相互远离,压力调节伸缩件310伸长,使得电池受到的压力减小进而实现了电池化成时压力的调节,减轻了化成过程中电池内气涨鼓壳的程度,进而提高了电池化成的合格率。
需要说明的是,第二夹持件220与压力调节伸缩件310设置在安装板100的同一侧,具体地,导通槽120的开口方向朝向第二夹持件220,且第二夹持件220的滑动方向与导通槽120的延伸方向相同,并且压力调节伸缩件310的滑动方向与导通槽120的延伸方向相同,即第二夹持件220与压力调节伸缩件310的滑动方向相同,即当压力调节伸缩件310收缩滑向安装腔110时,第二夹持件220滑向安装板100;当传动组322驱动滑动块321相对于安装板100沿第一方向a滑动时,相邻两个安装板100相互靠近,压力调节伸缩件310收缩,实现了压力调节伸缩件310与电池的抵接,并且在压力调节伸缩件310伸长和收缩的过程中实现了对电池化成压力的调节。还可以理解,若第一夹持件210与安装板100体滑动连接且滑动方向与导通槽120的延伸方向相同,而第二夹持件220与安装板100固定连接,则在将电池的正负极耳抵接于第一夹持件210时,第一夹持件210的凸设长度较大,再使第二夹持件220与第一夹持件210连接后,并且在对电池化成压力的调解过程中,第一夹持件210会相对于安装板100发生滑动,在滑动过程中第一夹持件210和第二夹持件220夹紧电池的正负极耳且会拉伸或挤压电池的正负极耳,导致电池的正负极耳发生损坏,破坏了电池的结构,因此,在本申请并联化成装置中,第一夹持件210与安装板100固定连接,确保了电池在化成过程中,避免了电池的正负极耳因在化成过程中发生损坏而破坏了电池的结构的问题,提高了电池化成的合格率。
还需要说明的是,第一夹持件210包括正极柱211和负极柱212,正极柱211与电池的正极耳连接,负极柱212与电池的负极耳连接,并且各第一夹持件210与电源并联连接,进而实现了各电池的并联连接,提高了电池化成的电流一致性,进而提高了电池化成的一致性。
可以理解的是,滑动块321为含有该滑动块321的安装板100与另一层叠设置的安装板100的连接结构,第一方向为该层叠设置的安装板100竖直指向该含有该滑动块321的安装板100;第二方向为该含有该滑动块321的安装板100竖直指向该层叠设置的安装板100,确保了安装板100之间的距离的调节,进而确保了电池表面的压力调节。
还可以理解的是,滑动块321为两个层叠设置的夹持机构10a的接触部分,当调节其中一个夹持机构10a的滑动块321沿第一方向滑动时,相邻两个安装板100相互靠近,压力调节伸缩件310收缩,使得压力调节伸缩件310的弹性形变变大,进而使得电池的化成压力变大,实现了电池化成压力的调节;当传动组322驱动滑动块321相对于安装板100沿第二方向滑动时,相邻两个安装板100相互远离,压力调节伸缩件310伸长,使得压力调节伸缩件310的弹性形变变小,进而使得电池的化成压力变小。还可以理解,传动组322安装在安装板100上并与滑动块321传动连接,实现了对滑动块321的滑动调节可控性,进而提高了电池化成过程中化成压力的可控性。
请一并参阅图1、图2和图6,在其中一个实施例中,滑动块321为“l”形或“t”形滑动块,提高了滑动块321与另一层叠设置安装板100的连接牢靠性,即提高了含有该滑动块321的安装板100与另一层叠设置安装板100的连接稳定性。
请一并参阅图1、图3和图5,在其中一个实施例中,升降调节件320的数目为两个,两个升降调节件320分别设置在安装板100的两端部,确保了安装板100与安装板100之间的距离的可控性,进而提高了电池化成过程中化成压力的可控性,还可以理解,在其他实施例中,升降调节件320的数目为多个,多个升降调节件320均匀分布于安装板100上,更好地确保了安装板100与安装板100之间的距离的可控性,进而提高了电池化成过程中化成压力的可控性。
请一并参阅图2、图5和图6,在其中一个实施例中,传动组322包括电机3221、第一带轮3224、第二带轮3225、传动带3222和丝杆副3223,电机3221安装在安装板100上,第一带轮3224套设于电机3221的动力输出端,第二带轮3225套设于丝杆副3223上,传动带3222穿设于安装板100并分别套设于第一带轮3224和第二带轮3225上,丝杆副3223与滑动块321转动连接。可以理解,传动带3222分别套设于第一带轮3224和第二带轮3225上,实现了电机3221间接带动丝杆副3223转动,而丝杆副3223与滑动块321连接,在电机3221带动丝杆副3223转动的过程中,丝杆副3223同时也带动滑动块321相对于安装板100滑动,通过电机3221和丝杆副3223的精确控制,提高了滑动块321的滑动可控性,进而提高了电池化成过程中化成压力的可控性。
请一并参阅图5和图6,在其中一个实施例中,压力调节伸缩件310包括弹性件311和压块312,弹性件311设置在安装腔110中,压块312位于安装腔110内,且压块312部分凸出于导通槽120,弹性件311的一端与压块312连接,弹性件311的另一端与安装腔110内壁连接,压块312与安装板100滑动连接。可以理解,弹性件311实现了压力调节伸缩件310的伸缩性能,并且在弹性件311伸缩的过程中,弹性形变的变化使得与电池接触的压块312对电池的压力发生变化,进而实现了电池化成过程中化成压力的可控性,并且压块312与电池的接触面积较大,确保了电池化成过程中各处受到的压力保持一致,避免了电池化成过程中收到的压力不均,导致电池局部发生气涨鼓壳的问题,提高了电池化成的一致性和合格率。
在其中一个实施例中,弹性件分别焊接于压块和安装板的内壁上,提高了弹性件与压块,以及弹性件与安装板的连接稳定性。
在其中一个实施例中,弹性件分别与压块和安装板的内壁抵接,提高了弹性件与压块,以及弹性件与安装板的连接稳定性。
在其中一个实施例中,弹性件分别与压块和安装板的内壁胶接,提高了弹性件与压块,以及弹性件与安装板的连接稳定性。
在其中一个实施例中,压块为硅胶压块,避免了压块损坏电池包装壳的问题。
在其中一个实施例中,安装板还包括第一限制体,第一限制体设置在安装腔中,弹性件套设在第一限制体上。压块包括第二限制体,第二限制体设置在安装腔中,弹性体套设在第二限制体上,第一限制体与第二限制体交错设置,提高了弹性件与压块,以及弹性件与安装板的连接稳定性。
在其中一个实施例中,弹性体为螺旋弹簧,螺旋弹簧的一端与安装腔的内壁连接,螺旋弹簧的另一端与压力连接,确保了压块与安装板的滑动连接。
在其中一个实施例中,弹性体为弹性胶柱,弹性胶柱的一端与安装腔的内壁连接,弹性胶柱的另一端与压力连接,确保了压块与安装板的滑动连接。
请一并参阅图5和图6,在其中一个实施例中,压块312包括卡接部3121和抵接部3122,卡接部3121卡接于在安装腔110中并与安装板100滑动连接,且卡接部3121与抵接部3122连接,抵接部3122位于导通槽120内,且抵接部3122部分凸出于导通槽120,抵接部3122与各夹持组件200的第二夹持件220对应设置。可以理解,卡接部3121卡接于安装板100上且与抵接部3122连接,使得压块312安装于安装板100上并避免了压块312从安装板100上滑脱的问题,提高了压块312与安装板100的连接稳定性。
在其中一个实施例中,卡接部3121与抵接部3122为一体成型结构,使卡接部3121与抵接部3122牢固连接,有利于压块312的快速加工成型,减少了压块312的加工工序,增加了压块312的结构稳定性,同时使压块312的结构更加紧凑。
请一并参阅图5和图6,在其中一个实施例中,导通槽120和抵接部3122的数目均为多个,多个抵接部3122一一对应设置于多个导通槽120内,多个抵接部3122均与卡接部3121连接,且多个抵接部3122与多个夹持组件200的第二夹持件220一一对应设置。可以理解,多个抵接部3122与多个导通槽120一一对应设置,实现了压块312的滑动,并且多个抵接部3122与卡接部3121连接,提高了电池化成过程中各电池受到的压力的一致性,进而提高了电池化成的一致性和合格率。
需要说明的是,若压块312和弹性件311的数目均为多个,且多个压块312相互独立,则在压块312的弹性件311发生弹性形变产生的弹力大小不一致时,导致电池化成过程中各电池受到的化成压力一致性较差,进而造成电池的化成一致性较差,因此,在本申请并联化成装置中,压块312包括卡接部3121和抵接部3122,使得抵接部3122设置在安装腔110中并与安装板100滑动连接,进而使得弹性件311发生弹性形变的作用力统一作用在卡接部3121上,并且通过多个与卡接部3121连接的抵接部3122对电池施加压力,提高了电池化成过程中各电池收到的压力一致性,进而提高了电池化成的一致性和合格率。
在其中一个实施例中,压块312与电池相抵的一侧面的面积大于电池与压块312相抵的一侧面的面积,进一步确保了电池化成过程中各处受到的压力保持一致,避免了电池化成过程中收到的压力不均,导致电池局部发生气涨鼓壳的问题,提高了电池化成的一致性和合格率。
请一并参阅图5和图6,在其中一个实施例中,安装板100上还开设有多个伸缩槽140,每一伸缩槽140的延伸方向与导通槽120的延伸方向相同,每一伸缩槽140的开口方向与导通槽120的开口方向相同。在本实施例中,每一夹持组件200的第二夹持件220包括夹持块221和伸缩件222,每一夹持组件200的第二夹持件220夹持块221的一端部卡接于相应的伸缩槽140中并与安装板100滑动连接,每一夹持组件200的第二夹持件220的伸缩件222设置在相应的伸缩槽140中,每一夹持组件200的第二夹持件220的伸缩件222夹持于安装板100与相应的夹持块221之间。可以理解,第二夹持件220的夹持块221的一端卡接在相应的伸缩槽140中,避免了第二夹持件220从安装板100上脱离的问题,提高了第二夹持件220与安装板100的连接稳定性,并且通过伸缩件222实现了第二夹持件220的滑动,避免了第二夹持件220对压力调节伸缩件310的机械干涉,确保了压力调节伸缩件310对电池的化成压力的可控性。
可以理解的是,第二夹持件220为绝缘夹持体,降低了电池化成中电池短路的发生概率,提高了电池化成合格率。
在其中一个实施例中,伸缩件310分别焊接于夹持块221和伸缩槽140的内壁上,提高了伸缩件222与夹持块221,以及伸缩件222与安装板100的连接稳定性。
在其中一个实施例中,伸缩件222分别与夹持块221和伸缩槽140的内壁抵接,提高了伸缩件222与夹持块221,以及伸缩件222与安装板100的连接稳定性。
在其中一个实施例中,伸缩件222分别与夹持块221和伸缩槽140的内壁胶接,提高了伸缩件222与夹持块221,以及伸缩件222与安装板100的连接稳定性。
在其中一个实施例中,伸缩件222为螺旋弹簧,螺旋弹簧的一端与伸缩槽的内壁连接,螺旋弹簧的另一端与夹持块221连接,确保了夹持块221与安装板100的滑动连接。
在其中一个实施例中,伸缩件222为弹性胶柱,弹性胶柱的一端与伸缩槽的内壁连接,弹性胶柱的另一端与夹持块221连接,确保了夹持块221与安装板100的滑动连接。
在其中一个实施例中,夹持块221为硅胶夹持块,避免了压块312损坏电池的正负极耳的问题。
在其中一个实施例中,安装板100还包括第三限制体,第三限制体设置在伸缩槽140中,伸缩件222套设在第三限制体上。夹持块221包括第四限制体,第四限制体设置在伸缩槽140中,伸缩件222套设在第四限制体上,第一限制体与第二限制体交错设置,提高了伸缩件222与夹持块221,以及伸缩件222与安装板100的连接稳定性。
请一并参阅图4,在其中一个实施例中,每一夹持组件200的第一夹持件210还包括绝缘体213,每一夹持组件200的第一夹持件210的绝缘体213夹设于相应的正极柱211和相应的负极柱212之间,降低了电池化成中电池短路的发生概率,提高了电池化成合格率。
请参阅图7,本申请还提供一种并联化成设备,包括水平矫正器、壳体20和上述任一实施例的并联化成装置10,至少两个层叠设置的夹持机构10a与水平矫正器均设置在壳体20内,水平矫正器与任一夹持机构10a的安装板100连接,水平矫正器用于调整安装板100的水平度。请一并参阅图1、图3和图5,在本实施例中,并联化成装置10包括至少两个层叠设置的夹持机构10a,两个夹持机构10a共同用于夹持电池。每一夹持机构10a包括安装板100、多个夹持组件200和压力调节组件300。相邻两个夹持机构10a的安装板100层叠设置,安装板100内开设有安装腔110、导通槽120和滑动槽130,安装腔110与导通槽120连通。每一夹持组件200包括第一夹持件210和第二夹持件220,第一夹持件210和第二夹持件220相对设置在安装板100的两侧,每一第一夹持件210包括正极柱211和负极柱212,正极柱211和负极柱212均安装于安装板100上,第二夹持件220与安装板100滑动连接,第二夹持件220的滑动方向与导通槽120的延伸方向相同,且导通槽120的开口方向朝向安装板100设置第二夹持件220的一侧。压力调节组件300包括压力调节伸缩件310和升降调节件320,压力调节伸缩件310位于安装腔110内并与安装板100弹性连接,压力调节伸缩件310部分通过导通槽120凸出于安装板100的外围,压力调节伸缩件310还与安装板100滑动连接,压力调节伸缩件310的滑动方向与导通槽120的延伸方向相同;升降调节件320包括滑动块321和传动组322,滑动块321设置在滑动槽130处并与安装板100滑动连接,且滑动块321与另一层叠设置的安装板100连接,传动组320安装在安装板100上,且传动组322的动力输出端与滑动块321连接,传动组322驱动滑动块321相对于安装板100滑动,滑动块321的滑动方向与导通槽120的延伸方向相同。其中,当传动组322驱动滑动块321相对于安装板100沿第一方向滑动时,即当传动组322驱动滑动块321相对于安装板100沿a方向滑动时,相邻两个安装板100相互靠近,压力调节伸缩件310收缩;当传动组322驱动滑动块321相对于安装板100沿第二方向滑动时,即当传动组322驱动滑动块321相对于安装板100沿b方向滑动时,相邻两个安装板100相互远离,压力调节伸缩件310伸长。
上述的并联化成设备中,采用并联化成装置10中的至少两个层叠设置的夹持机构10a实现了电池的快速固定和电池化成压力的调节,并且加入水平矫正器,使得各并联化成装置10处于水平状态,避免了并联化成装置10倾斜,导致各电池化成压力不均,并且导致并联化成装置10对各电池的化成压力调节不准确,降低了化成后的电池一致性,甚至导致电池正负极耳接触不良和电池化成过程中发生电解液漏出,降低了电池化成合格率的问题,提高了化成后电池的一致性和提高了电池化成的合格率。
需要说明的是,水平矫正器用于检测夹持机构10a的水平程度并调节加持机构的水平程度,以使夹持机构10a处于水平状态。
本申请还提供一种锂离子电池,采用上述任一实施例的并联化成设备化成得到。请一并参阅图7,在本实施例中,并联化成设备包括水平矫正器、壳体20和上述任一实施例的并联化成装置10,至少两个层叠设置的夹持机构10a与水平矫正器均设置在壳体20内,水平矫正器与夹持机构10a的安装板100连接,水平矫正器用于调整安装板100的水平度。
上述的锂离子电池中,通过并联化成设备中的至少两个层叠设置的夹持机构10a实现了电池的快速固定和电池化成压力的调节,并且加入水平矫正器,使得各并联化成装置10处于水平状态,避免了并联化成装置10倾斜,导致各电池化成压力不均,并且导致并联化成装置10对各电池的化成压力调节不准确,降低了化成后的电池一致性,甚至导致电池正负极耳接触不良和电池化成过程中发生电解液漏出,降低了电池化成合格率的问题,提高了化成后电池的一致性。
为了更好地理解本发明的锂离子电池,以下对本发明的锂离子电池进行进一步的解释说明,在其中一个实施例中,所述锂离子电池采用上述任一实施例所述并联化成设备进行化成得到,请一并参阅图7,所述锂离子电池的化成包括如下步骤:
s100、获取完成注液的电芯。可以理解,锂离子电池化成工艺中的操作对象为完成注液后的电芯,电芯中注入的电解液会与电芯中的极片发生反应,电解液的种类和用量均与极片中的活性物质相关联,因此,获取的电芯中注入的电解液为与电芯的极片相适配的电解液,并且注液后的电芯为注入电解液的时间相同的电芯,提高了注液后电芯内阻的一致性,使得静置电芯在并联电路中经过的电流较接近,降低了参数控制难度,更好地实现了静置电芯在并联电路中化成的可行性,进而提高了锂离子电池化成的效率。
s200、对电芯进行喷码处理。可以理解,在对锂离子电池进行化成工艺的过程中,并不是针对单体或少量的电芯进行化成,而是针对大量的电芯进行化成操作,操作人员仅凭记忆或简单标记后可能会出现小概率漏处理或处理失误的情况,难以保证电芯的浸润程度一致性,进而造成电芯在化成开始阶段的内阻不相同,进而使得经过各并联电路下的电芯的电流难以控制,使得同批次化成后的电芯的一致性较差,且使得化成后的锂离子电池的电池容量和循环性能无法得到有效的控制,因此,通过对电芯进行喷码,使得各电芯均具有自身对应的信息系统,经过对信息系统的筛选,且电芯在完成注液后的到喷码经历的时间相同,确保了电芯化成前的充分浸润和确保了电芯化成前的一致性。
s300、对经过喷码处理后的电芯进行搁置操作,得到静置电芯。可以理解,喷码处理后的电芯均具有自身对应的信息系统,以分别计量电芯搁置操作的操作时间,信息系统筛选达到静置时间预设时长的全部电芯,显示各电芯的所在位置,然后操作人员将其挑出,以进行化成的下一步骤,设计了防呆操作,避免了出现电芯小概率漏处理或处理失误的情况,提高了化成后锂离子电池的一致性,使得静置电芯在并联电路中经过的电流较相近,降低了参数控制难度,更好地实现了静置电芯在并联电路中化成的可行性,进而提高了锂离子电池化成的效率。
s400、将静置电芯进行并联连接操作,得到电芯组。可以理解,经过并联连接的各静置电芯的电压相同,且在确保了静置电芯的内阻一致性的前提下,使得经过各静置电芯的电流的一致性较好,因此,在控制经过各并联的静置电芯的电流时,在电源两端设置的电流为各静置电芯的总和即可,降低了锂离子电池化成的控制难度,更好地实现了静置电芯在并联电路中化成的可行性,进而提高了锂离子电池化成的效率。在本实施例中,采用并联化成设备将静置电芯进行并联连接操作。还可以理解,并联化成设备实现了静置电芯的快速固定连接,并且提高了静置电芯的连接稳定性。
s500、采用预定电流对电芯组进行阶段式化成操作,得到锂离子电池。可以理解,将静置电芯进行并联连接操作,在保证了静置电芯的浸润一致性的情况下,采用预定电流对电芯组进行阶段式化成操作,提高了锂离子电池化成的一致性,有效减少了锂离子电池的化成时间和提高了锂离子电池的电导率,进而提高了锂离子电池的化成效率和电池的循环性能,避免了在小电流状态下,电芯组所需的化成时间较长的问题和在大电流状态下,电芯组的循环衰减较快的问题。
上述的锂离子电池并联化成方法中,对电芯进行喷码处理,使得每一电芯均有对应的喷码时间,对喷码处理后的电芯进行静置操作,使得每一电芯均具有对应的静置操作的操作时长,使得操作人员可以挑选得到具有同一静置操作的操作时长的静置电芯,确保了静置电芯的浸润一致性,使得静置电芯在并联电路中经过的电流较接近,降低了参数控制难度,更好地实现了静置电芯在并联电路中化成的可行性,进而提高了锂离子电池化成的效率。将静置电芯进行并联连接操作,在保证了静置电芯的浸润一致性的情况下,采用预定电流对电芯组进行阶段式化成操作,提高了锂离子电池化成的一致性,有效减少了锂离子电池的化成时间和提高了锂离子电池的电导率,进而提高了锂离子电池的化成效率和锂离子电池的循环性能,避免了在小电流状态下,电芯组所需的化成时间较长的问题和在大电流状态下,电芯组的循环衰减较快的问题。
在其中一个实施例中,在得到静置电芯之前,且在对经过喷码处理后的电芯进行搁置操作之后,还包括如下步骤:获取静置电芯的静置合格时间x。可以理解,合格时间x是根据对注液后的电芯进行电解液浸润程度检测得到的注液后的电芯被完全浸润的平均时长区间确定的,其中,被完全浸润的平均时长区间的对象为使用了同材质的电解液和同材质的电芯制备得到的注液后的电芯,确保了注液后的电芯被完全浸润,提高了锂离子电池的电池容量。
进一步地,对经过喷码处理后的电芯进行扫码操作,得到电芯的静置时间x。可以理解,喷码处理后的电芯均具有自身对应的信息系统,以分别计量电芯搁置操作的操作时间,信息系统会对电芯搁置操作的操作时间进行相应的实时计量,计量静置时间x达到静置合格时间x后进行相应的提示,指定电芯,但是操作人员还可能会出现意外操作,将喷码后的电芯与其他已经喷码的电芯弄混,因此,在确认指定电芯时还需要对指定的电芯进行进一步的扫码确认,设置喷码和扫码两个防呆操作,进一步确保了挑选得到的注液后的电芯的确具有足够的静置时间,进而提高了锂离子电池的一致性和提高了锂离子电池的电池容量。
更进一步地,对电芯进行合格品判定,若x=x,则判断电芯为合格静置电芯,可得到静置电芯;若x>x,则判断电芯为不合格静置电芯,重复进行搁置操作。可以理解,信息系统对电芯搁置操作的操作时间进行相应的实时计量,计量得到的静置时间x达到静置合格时间x后进行相应的提示,指定电芯已符合静置电芯的要求,然后对指定的电芯进行进一步的扫码确认,若扫码后x=x,则判断电芯为合格静置电芯,可得到静置电芯,若扫码后x>x,则判断电芯为不合格静置电芯,重复进行搁置操作,通过设置喷码和扫码两个防呆操作,进一步确保了挑选得到的注液后的电芯的确具有足够的静置时间,进而提高了锂离子电池的一致性和提高了锂离子电池的电池容量。
可以理解,通过对注液后的电芯进行喷码处理,建立了电芯自身对应的信息系统,使得各电芯的搁置操作的操作时长可计量化,避免了操作人员仅凭记忆或简单标记后可能会出现注液后的电芯小概率漏处理或处理失误的问题,并且在信息系统提示相关注液后的电芯的静置时间x符合静置时间x的要求后,再通过扫码进一步确认信息无误,通过喷码和扫码两个防呆操作,进一步确保了挑选得到的注液后的电芯的确具有足够的静置时间,进而提高了锂离子电池的一致性和提高了锂离子电池的电池容量。
在其中一个实施例中,静置合格时间x为18h~35h,确保了电芯的正负极片被电解液浸润完全。
在其中一个实施例中,在高温条件下,对经过喷码处理后的电芯进行搁置操作,提高了经过喷码处理后的电芯中电极被电解液浸润的速度。
在其中一个实施例中,阶段式化成操作包括依次进行的第一阶段化成操作、第二阶段化成操作、第三阶段化成操作以及第四阶段化成操作,阶段式化成操作中电芯组使用的化成电流随着阶段的增加过程先增大后减小,避免了在小电流状态下,电芯组所需的化成时间较长的问题和在大电流状态下,电芯组的循环衰减较快的问题,提高了锂离子电池的化成效率和锂离子电池的循环性能。
在其中一个实施例中,第三阶段化成操作中电芯组使用的化成电流大于第二阶段化成操作中电芯组使用的化成电流,第三阶段化成操作中电芯组使用的化成电流大于第四阶段化成操作中电芯组使用的化成电流,确保了锂离子电池的化成过程中形成稳定的固体电解质界面膜,并且提高了锂离子电池的化成效率。
在其中一个实施例中,阶段式化成操作,包括如下步骤:
采用0.2c~0.3c恒流对电芯组进行第一阶段化成操作,得到第一电芯。可以理解,在外加电流对电芯组进行化成的初始阶段,电芯组内还未形成固体电解质界面膜,若外加大电流会导致生产的固体电解质界面膜蓬松且不稳定,因此在电芯组进行化成的初始阶段,即在第一阶段化成操作中,采用0.2c~0.3c恒流对电芯组进行化成,提高了第一电芯形成的固体电解质界面膜的稳定性,减少了正负电极中的导电物质的消耗,确保了第一电芯的电池容量。
进一步地,采用0.4c~0.5c恒流对第一电芯进行第二阶段化成操作,得到第二电芯。可以理解,在对电芯组进行了化成的初始阶段之后,若继续采用外加的小电流对第一电芯进行化成,会造成第一电芯的形成的固体电解质界面膜的致密性更高,增加了,从而影响锂离子电池的倍率和循环性能,因此,在对电芯组进行了化成的初始阶段之后,即在第一电芯进行第二阶段化成操作中,采用0.4c~0.5c恒流对第一电芯进行化成,使得形成的固体电解质界面膜朝向电解质的一侧面的膨松性较好,进而固体电解质界面膜能够浸润更多的电解液,提高了第二电芯的离子电导率。
更进一步地,采用0.6c~0.7c恒流对第二电芯进行第三阶段化成操作,得到第三电芯。可以理解,在对电芯组进行了前两个阶段的化成后,为了增加锂离子电池的化成效率,进一步增大了外加电流对第二电芯进行第三阶段化成操作,但电流增加的幅度过大,使得锂离子的移动速度跟不上电子的移动速度,造成第二电芯严重极化,因此,采用0.6c~0.7c恒流对第二电芯进行化成,减轻了第三电芯的极化程度,但是为了进一步减轻第三电芯的极化程度,要同时调整温度、压力和充电时间辅助较大电流下减轻第三电芯的极化程度。
更进一步地,采用0.2c~0.4c恒流对第三电芯进行第四阶段化成操作,得到锂离子电池。可以理解,在对电芯组进行了前三个阶段的化成后,电池已经基本完成化成,固体电解质界面膜也已经基本形成,在此阶段采用0.2c~0.4c恒流对第三电芯进行第四阶段化成操作,使得固体电解质界面膜朝向电解液的一侧的密度增大,促进了化成的完成,进一步提高了电池化成的效率,且进一步提高了固体电解质界面膜的稳定性。
可以理解的是,将静置电芯进行并联连接操作,在保证了静置电芯的浸润一致性的情况下,分别采用0.2c~0.3c、0.4c~0.5c、0.6c~0.7c和0.2c~0.4c恒流对电芯组进行阶段式化成操作,提高了锂离子电池化成的一致性,有效减少了锂离子电池的化成时间和提高了锂离子电池的电导率,进而提高了锂离子电池的化成效率和电池的循环性能,避免了在小电流状态下,电芯组所需的化成时间较长的问题和在大电流状态下,电芯组的循环衰减较快的问题。
需要说明的是,上述0.2~0.3、0.4~0.5、0.6~0.7和0.2~0.4是倍率范围值,c代表每组锂离子电池的容量值。
在其中一个实施例中,在阶段式化成操作中,在温度为40℃~50℃的条件下进行第一阶段化成操作。可以理解,在外加电流对电芯组进行化成的第一阶段,电芯组内还未形成固体电解质界面膜,采用0.2c~0.3c恒流对电芯组进行化成,确保第一电芯形成的固体电解质界面膜的稳定性,而在温度为40℃~50℃的条件下,增加了电解液的离子电导率,有利于固体电解质界面膜的生成,但是温度过低,则达不到所需的效果;温度过高,则会破坏生成的固体电解质界面膜的致密性,导致生成的固体电解质界面膜多孔蓬松,因此,使得电芯组在温度为40℃~50℃的条件下采用0.2c~0.3c恒流对电芯组进行化成,进一步确保第一电芯形成的固体电解质界面膜的稳定性。
进一步地,在温度为60℃~70℃的条件下进行第二阶段化成操作。可以理解,在对电芯组进行了化成的初始阶段之后,采用0.4c~0.5c恒流对第一电芯进行化成,确保形成的固体电解质界面膜朝向电解质的一侧面的膨松性较好,但在加大电流进行化成的过程中,容易造成锂离子电池的极化程度加大,而在温度为60℃~70℃的条件下,使得电解液中锂离子的移动速度加快,使得此时的锂离子的移动速度较接近此时的电子的移动速度,有效减轻了第二电芯的极化程度,以及采用0.4c~0.5c恒流化成辅同在温度为60℃~70℃的条件下进行第二阶段化成操作,使得形成的固体电解质界面膜朝向电解质的一侧面的膨松性较好,提高了第二电芯的离子电导率。
更进一步地,在温度为70℃~80℃的条件下进行第三阶段化成操作。可以理解,在对电芯组进行了前两个阶段的化成后,采用0.6c~0.7c恒流对第二电芯进行化成,增加锂离子电池的化成效率,但在进一步加大电流进行化成的过程中,容易造成锂离子电池的极化程度进一步加大,而在温度为70℃~80℃的条件下,使得电解液中锂离子的移动速度进一步加快,使得此时的锂离子的移动速度较接近此时的电子的移动速度,有效减轻了第三电芯的极化程度,以及采用0.6c~0.7c恒流化成辅同在温度为70℃~80℃的条件下进行第三阶段化成操作,进一步增加了形成的固体电解质界面膜朝向电解质的一侧面的膨松性,提高了第二电芯的离子电导率。还可以理解的是,电池化成过程中温度太高,会破坏形成的固体电解质界面膜,使得固体电解质界面膜溶解,导致锂离子电池不可逆的容量损失,并且会增加电池内部的副反应,使得锂离子电池表面鼓包;而温度太低会造成锂离子电池的电解液中锂离子的移动速度跟不上电子的移动速度,使得增加温度达不到降低极化的作用,因此,在第三阶段化成操作中,温度控制在70℃~80℃,一方面减少了对形成的固体电解质界面膜的破坏,提高了锂离子电池的电池容量和充放电倍率;另一方面,提高了电解液中锂离子的移动速度,降低了锂离子电池的极化。
更进一步地,在温度为35℃~45℃的条件下进行第四阶段化成操作。可以理解,在对电芯组进行了前三个阶段的化成后,电池已经基本完成化成,固体电解质界面膜也已经基本形成,此时采用0.2c~0.4c恒流对第三电芯进行第四阶段化成操作,降低了电子的移动速率,因此,降低温度以减小锂离子电池中离子的移动速度,并且降低温度,减小了对形成的固体电解质界面膜的破坏,使得形成的固体电解质界面膜更加致密,进而使得形成的固体电解质界面膜更加稳定,促进了化成的完成,进而提高了电池化成的效率,且提高了固体电解质界面膜的稳定性。
可以理解的是,分别采用40℃~50℃、60℃~70℃、70℃~80℃和35℃~45℃的温度对电芯组进行阶段式化成操作,一一对应配合采用的0.2c~0.3c、0.4c~0.5c、0.6c~0.7c和0.2c~0.4c恒流对电芯组进行阶段式化成操作,增加了电芯的化成速度,进而提高了锂离子电池的化成效率;并且减轻了锂离子电池化成过程中的极化问题,同时也使得形成的固体电解质界面膜更加稳定和导电率更高,提高了锂离子电池的充放电性能和循环性能。
在其中一个实施例中,在阶段式化成操作中,第一阶段化成操作的操作时间为3min~5min。可以理解,在第一阶段化成操作中,极片表面初步形成固体电解质界面膜,此时的固体电解质界面膜受到电解液温度的影响较大,容易使得生成的固体电解质界面膜迅速被不可逆地破坏,进而降低了锂离子电池的化成效率并且降低了化成后的锂离子电池的电池容量,因此,在第一阶段化成操作中采用较小的电流和较低的温度对电芯进行化成操作,而第一阶段操作的时间若太长,影响锂离子电池化成的速度,并且使得固体电解质界面膜的阻抗增大,影响锂离子电池的充放电性能;第一阶段操作的时间若太短,使得生成的固体电解质界面膜的稳定性较差,影响了锂离子电池的电池容量和循环性能,因此,使得第一阶段化成操作的操作时间为3min~5min,增大了锂离子电池的化成速度和增大了锂离子电池中固体电解质界面膜的稳定性。采用0.2c~0.3c恒流、温度为40℃~50℃和操作时间为3min~5min,此时的化成电流较小,使得形成的固体电解质界面膜较致密,并且采用较小的温度,减轻了生成的固体电解质界面膜的破坏程度。
进一步地,第二阶段化成操作的操作时间为6min~10min。可以理解,在第二阶段化成操作中,极片表面已经初步形成了较致密的固体电解质界面膜,但固体电解质界面膜受到电解液温度的影响依然较大,为了进一步增大电芯的化成速度,在第二阶段化成操作中相对增大电流,即采用0.4c~0.5c恒流对电芯进行化成操作,进一步地,配合调整第二阶段化成操作的温度以降低对固体电解质界面膜的破坏程度,即采用60℃~70℃的温度对电芯进行化成操作,提高了电芯的化成速度且降低了锂离子电池的极化程度,使第二阶段化成操作的操作时间为6min~10min,确保了减少固体电解质界面膜的破坏程度的同时提高了电芯的化成速度。
更进一步地,第三阶段化成操作的操作时间为15min~25min。可以理解,在第三阶段化成操作中,极片表面已经形成了较稳定的固体电解质界面膜,为了进一步增大电芯的化成速度,在第三阶段化成操作中进一步增大电流,即采用0.6c~0.7c恒流对电芯进行化成操作,进一步地,配合调整第三阶段化成操作的温度,即采用60℃~70℃的温度对电芯进行化成操作,提高了电芯的化成速度且降低了锂离子电池的极化程度,第三阶段化成操作的操作时间为15min~25min,确保了稳定的固体电解质界面膜的形成。还可以理解,若在第二阶段化成操作中直接采用高于0.4c~0.5c恒流和高于60℃~70℃的温度对电芯进行化成操作,导致在第一阶段化成操作中生成的固体电解质界面膜被严重破坏,使得锂离子电池的电极表面难以再进一步形成稳定的固体电解质界面膜,并且严重降低了锂离子的电池容量,影响锂离子电池化成后的使用形成,因此,在第二阶段化成操作先采用0.4c~0.5c恒流和60℃~70℃的温度对电芯进行化成操作,使得进一步生成较稳定的固体电解质界面膜之后再进一步增大电流和温度,进一步提高锂离子电池的化成速度,即在第三阶段化成操作中采用0.6c~0.7c恒流和60℃~70℃的温度对电芯进行6min~10min的第二阶段化成操作,确保了减轻对生成的固体电解质界面膜的破坏程度的同时提高了锂离子电池的化成的速度。
更进一步地,第四阶段化成操作的操作时间为35min~45min。可以理解,在第四阶段化成操作中,电池已经基本完成化成,固体电解质界面膜也已经基本形成,但是生成的固体电解质界面膜朝向电解液的一侧面较蓬松,在锂离子电的充放电过程中容易被破坏,因此,在第四阶段化成操作中采用0.2c~0.4c恒流和35℃~45℃的温度对第三电芯进行第四阶段化成操作,提高了生成的固体电解质界面膜朝向电解液的一侧面的致密性,进而提高了化成后的锂离子电池中生成的固体电解质界面膜的稳定性,使得第四阶段化成操作的操作时间为35min~45min,确保了稳定的固体电解质界面膜的形成。
可以理解的是,锂离子电池的化成时间一般在5天~7天的静置化成,而本发明的锂离子电池并联化成方法分别采用40℃~50℃、60℃~70℃、70℃~80℃和35℃~45℃的温度,一一对应配合采用的0.2c~0.3c、0.4c~0.5c、0.6c~0.7c和0.2c~0.4c恒流,并且一一对应配合采用3min~5min、6min~10min、15min~25min和35min~45min的操作时间对电芯组进行阶段式化成操作,增加了电芯的化成速度,进而提高了锂离子电池的化成效率,并且使得形成的固体电解质界面膜更加稳定和导电率更高,提高了锂离子电池的充放电性能和循环性能。
在其中一个实施例中,并联连接操作的步骤,包括如下步骤:采用并联化成设备对静置电芯进行固定处理,确保了各电芯的快速固定和固定牢靠性。
进一步地,将经过固定处理后的静置电芯并联连接于电路中。可以理解,将具有相同静置时间的静置电芯,即将浸润程度一致性较好的静置电芯于同一并联电路中进行化成,确保了通过电芯组中各静置电芯的电压和电流的一致性,提高了化成后的锂离子电池性能的一致性。
上述的并联连接操作中,将经过固定处理后的静置电芯并联连接于电路中确保了静置电芯在电路中的连通稳定性,并且使得浸润程度一致性较好的静置电芯于同一并联电路中进行化成,确保了通过电芯组中各静置电芯的电压和电流的一致性,提高了化成后的锂离子电池性能的一致性。
在其中一个实施例中,在阶段式化成操作的步骤之前,且在并联连接操作的步骤之后,锂离子电池并联化成方法还包括如下步骤:对电芯组进行水平校正操作。可以理解,若对电芯组中的静置电芯逐个进行压力控制,增加了控制各静置电芯受到的压力的一致性的难度,使得各静置电芯受到的压力存在误差,进而降低了化成后的锂离子电池的一致性,因此,为了确保电芯组中各静置电芯受到的压力的一致性,使得电芯组中各静置电芯受到同一物质施加的压力,并且为了进一步确保电芯组中各静置电芯受到压力的一致性,在进行压力施加前,对电芯组进行水平校正操作,确保了电芯组中各静置电芯位于同一水平面,使得同一物质施加的压力均匀作用在电芯组中的各静置电芯上,确保了电芯组中的各静置电芯受到的压力一致性,进而提高了化成后的锂离子电池的一致性。
在其中一个实施例中,在得到锂离子电池的步骤之前,且在阶段式化成操作的步骤之后,锂离子电池并联化成方法还包括如下步骤:对电芯组进行抽气操作。可以理解,在锂离子电池化成过程中会产生副反应而生成气体,气体会破坏生成的固体电解质界面膜并且影响锂离子电池的使用性能,因此,在锂离子电池化成后需要将化成过程中生成的气体抽出,确保了锂离子电池的使用性能。
还可以理解,在抽出气体的过程中,外界环境中的水分会进一步促进锂离子电池内产生气体,进而破坏生成的固体电解质界面膜和电极结构,影响锂离子电池的充点电倍率和循环性能,因此,在其中一个实施例中,在干燥条件下,对电芯组进行抽气操作,减少了水份对化成后的锂离子电池的影响。
在其中一个实施例中,在得到锂离子电池的步骤之前,且在抽气操作的步骤之后,锂离子电池并联化成方法还包括如下步骤:对电芯组进行封口操作。可以理解,在锂离子电池化成后,需要将锂离子电池内的气体抽出,将气体抽出后即需要对锂离子电池进行封装,即对电芯组进行封口操作,以隔绝锂离子电池内部与外界的接触,确保了锂离子电池的使用性能。
还可以理解的是,在对锂离子电池进行封装的过程中,锂离子电池的内部与外界存在一定的接触,外界环境中的水份会进一步促进锂离子电池内产生气体,进而破坏生成的固体电解质界面膜和电极结构,影响锂离子电池的充点电倍率和循环性能,因此,在其中一个实施例中,在干燥条件下,对电芯组进行封口操作,减少了水分对化成后的锂离子电池的影响。
可以理解,电池在化成的过程中会产生气体,在化成过程中,若未将气体及时排除,会影响锂离子电池的固体电解质界面膜的生成和锂离子电池电极的结构稳定性,因此,在其中一个实施例中,在阶段式化成操作中,对电芯组施加的压力为2.0n/cm2~3.7n/cm2,减少了外界环境中的水份进入电芯组的内部,有效地减轻了对锂离子电池的固体电解质界面膜的生成的影响,并且有效提高了锂离子电池的电池容量和电池循环性能。
在其中一个实施例中,在压力为2.0n/cm2~2.4n/cm2的条件下进行第一阶段化成操作。可以理解,在第一阶段化成操作中,采用0.2c~0.3c恒流、温度为40℃~50℃和操作时间为3min~5min对电芯进行化成操作,此时的电芯内存在气体量较少,因此,采用2.0n/cm2~2.4n/cm2的压力施加至电芯组上,确保了电芯组中的电解液不被压出,并且有效地使电芯组的各电芯内存在气体量排出于电芯外,减少了外界环境中的水份进入电芯组内,进而提高了锂离子电池的电池容量和电池循环性能。
进一步地,在压力为2.7n/cm2~3.1n/cm2的条件下进行第二阶段化成操作。可以理解,在第二阶段化成操作中,采用0.4c~0.5c恒流、60℃~70℃的温度对电芯进行6min~10min的化成操作,此时的电芯内存在气体量的增长速度逐渐增加,依旧采用2.0n/cm2~2.4n/cm2的压力施加至电芯组上不能将电芯内存在气体量及时排出,因此,采用2.7n/cm2~3.1n/cm2的压力施加至电芯组上,确保了电芯组中的电解液不被压出,并且有效的使电芯组的各电芯内存在气体量排出于电芯外,减少了外界环境中的水份进入电芯组内,进而提高了锂离子电池的电池容量和电池循环性能。
更进一步地,在压力为3.2n/cm2~3.7n/cm2的条件下进行第三阶段化成操作。可以理解,在第三阶段化成操作中,采用0.4c~0.5c恒流和60℃~70℃的温度对电芯进行15min~25min化成操作,电流增大和温度增加,使得电解液中的物质之间的相互作用增强,进而使得电芯内存在气体量的增长速度进一步增加,依旧采用2.7n/cm2~3.1n/cm2的压力施加至电芯组上不能将电芯内存在气体量及时排出,因此,采用3.2n/cm2~3.7n/cm2的压力施加至电芯组上,确保了电芯组中的电解液不被压出,并且有效的使电芯组的各电芯内存在气体量排出于电芯外,减少了外界环境中的水份进入电芯组内,进而提高了锂离子电池的电池容量和电池循环性能。
更进一步地,在压力为2.0n/cm2~2.4n/cm2的条件下进行第四阶段化成操作。可以理解,在第四阶段化成操作中,电池已经基本完成化成,固体电解质界面膜也已经基本形成,采用0.2c~0.4c恒流和35℃~45℃的温度对第三电芯进行35min~45min的化成操作,此时产生的气体量较少,因此,采用2.0n/cm2~2.4n/cm2的压力施加至电芯组上,确保了电芯组中的电解液不被压出,并且有效地使电芯组的各电芯内存在气体量排出于电芯外,减少了外界环境中的水份进入电芯组内,进而提高了锂离子电池的电池容量和电池循环性能。
在其中一个实施例中,在真空条件下进行阶段式化成操作,有利于电芯组的各电芯内存在气体量排出于电芯外,减少了外界环境中的水份进入电芯组内,进而提高了锂离子电池的电池容量和电池循环性能。
在其中一个实施例中,在阶段式化成操作中,采用短路监测装置和断路监测装置对并联电路进行短路和断路监测,避免了电芯组在并联电路短路和断路情况下,并联电路中的电流发生变化,导致电芯组的各静置电芯的固体电解质界面膜的生成受到影响的问题,确保了形成的固体电解质界面膜的稳定性和导电率,提高了锂离子电池的充放电性能和循环性能。
可以理解,使得静置电芯的浸润程度相同,进而使得电芯组中的各静置电芯的内阻的一致性较好,但是静置电芯的内阻的影响因素并不仅限于静置电芯的浸润程度,为了进一步提高电芯组中各静置电芯的内阻的一致性,在其中一个实施例中,在阶段式化成操作中,采用电阻调节装置对并联电路的电流进行调节,通过电阻调节装置对并联电路的电流进行调节,提高了电芯组中各静置电芯的电流的一致性,进而提高了化成后的锂离子电池的一致性。
与现有技术相比,本发明至少具有以下优点:
1、本发明并联化成装置中,采用至少两个层叠设置的夹持机构对电池进行夹持,避免了电池化成时需要采用夹具一个一个将电池进行固定,耗时耗力,导致人工成本增加和化成效率降低的问题,具体地,将电池摆放于靠近夹持机构的第一夹持件处,并且将正负极耳抵接于第一夹持件上,然后通过另一夹持机构的第二夹持件与第一夹持件对应连接,并且使得压力调节伸缩件抵接于电池上,一方面压力调节伸缩件起到固定电池的作用,与第一夹持件和第二夹持件配合使用提高了电池的生产效率和减少了电池化成时间;另一方面压力调节伸缩件起到挤压电池,辅助排出电池内的气体的作用,当传动组驱动滑动块相对于安装板沿第一方向滑动时,相邻两个安装板相互靠近,压力调节伸缩件收缩,使得电池受到的压力增大;当传动组驱动滑动块相对于安装板沿第二方向滑动时,相邻两个安装板相互远离,压力调节伸缩件伸长,使得电池受到的压力减小进而实现了电池化成时压力的调节,减轻了化成过程中电池内气涨鼓壳的程度,进而提高了电池化成的合格率;
2、本发明并联化成设备中,采用并联化成装置中的至少两个层叠设置的夹持机构实现了电池的快速固定和电池化成压力的调节,并且加入水平矫正器,使得各并联化成装置处于水平状态,避免了并联化成装置倾斜,导致各电池化成压力不均,并且导致并联化成装置对各电池的化成压力调节不准确,降低了化成后的电池一致性,甚至导致电池正负极耳接触不良和电池化成过程中发生电解液漏出,降低了电池化成合格率的问题,提高了化成后电池的一致性和提高了电池化成的合格率。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
1.一种并联化成装置,其特征在于,包括至少两个层叠设置的夹持机构,两个所述夹持机构共同用于夹持电池,每一所述夹持机构包括:
安装板,相邻两个所述夹持机构的安装板层叠设置,所述安装板内开设有安装腔、导通槽和滑动槽,所述安装腔与所述导通槽连通;
多个夹持组件,每一所述夹持组件包括第一夹持件和第二夹持件,所述第一夹持件和所述第二夹持件相对设置在所述安装板的两侧,每一所述第一夹持件包括正极柱和负极柱,所述正极柱和所述负极柱均安装于所述安装板上,所述第二夹持件与所述安装板滑动连接,所述第二夹持件的滑动方向与所述导通槽的延伸方向相同,且所述导通槽的开口方向朝向所述安装板设置所述第二夹持件的一侧;
压力调节组件,所述压力调节组件包括压力调节伸缩件和升降调节件,所述压力调节伸缩件位于所述安装腔内并与所述安装板弹性连接,所述压力调节伸缩件部分通过所述导通槽凸出于所述安装板的外围,所述压力调节伸缩件还与所述安装板滑动连接,所述压力调节伸缩件的滑动方向与所述导通槽的延伸方向相同;所述升降调节件包括滑动块和传动组,所述滑动块设置在所述滑动槽处并与所述安装板滑动连接,且所述滑动块与另一层叠设置的所述安装板连接,所述传动组安装在所述安装板上,且所述传动组的动力输出端与所述滑动块连接,所述传动组驱动所述滑动块相对于所述安装板滑动,所述滑动块的滑动方向与所述导通槽的延伸方向相同;
其中,当所述传动组驱动所述滑动块相对于所述安装板沿第一方向滑动时,相邻两个所述安装板相互靠近,所述压力调节伸缩件收缩;当所述传动组驱动所述滑动块相对于所述安装板沿第二方向滑动时,相邻两个所述安装板相互远离,所述压力调节伸缩件伸长。
2.根据权利要求1所述的并联化成装置,其特征在于,所述传动组包括电机、第一带轮、第二带轮、传动带和丝杆副,所述电机安装在所述安装板上,所述第一带轮套设于所述电机的动力输出端,所述第二带轮套设于所述丝杆副上,所述传动带穿设于所述安装板并分别套设于所述第一带轮和所述第二带轮上,所述丝杆副与所述滑动块转动连接。
3.根据权利要求1所述的并联化成装置,其特征在于,所述压力调节伸缩件包括弹性件和压块,所述弹性件设置在所述安装腔中,所述压块位于所述安装腔内,且所述压块部分凸出于所述导通槽,所述弹性件的一端与所述压块连接,所述弹性件的另一端与所述安装腔的内壁连接,所述压块与所述安装板滑动连接。
4.根据权利要求3所述的并联化成装置,其特征在于,所述压块包括卡接部和抵接部,所述卡接部卡接于在所述安装腔中并与所述安装板滑动连接,所述卡接部与所述抵接部连接,所述抵接部位于所述导通槽内,且所述抵接部部分凸出于所述导通槽,所述抵接部与各所述夹持组件的第二夹持件对应设置。
5.根据权利要求4所述的并联化成装置,其特征在于,所述卡接部与所述抵接部为一体成型结构。
6.根据权利要求5所述的并联化成装置,其特征在于,所述导通槽和所述抵接部的数目均为多个,多个所述抵接部一一对应设置于多个所述导通槽内,多个所述抵接部均与所述卡接部连接,且多个所述抵接部与多个所述夹持组件的第二夹持件一一对应设置。
7.根据权利要求1所述的并联化成装置,其特征在于,所述安装板上还开设有多个伸缩槽,每一所述伸缩槽的延伸方向与所述导通槽的延伸方向相同,每一所述伸缩槽的开口方向与所述导通槽的开口方向相同;
每一所述夹持组件的第二夹持件包括夹持块和伸缩件,每一所述夹持组件的第二夹持件的所述夹持块的一端部卡接于相应的所述伸缩槽中并与所述安装板滑动连接,每一所述夹持组件的第二夹持件的所述伸缩件设置在相应的所述伸缩槽中,每一所述夹持组件的第二夹持件的所述伸缩件夹持于所述安装板与相应的所述夹持块之间。
8.根据权利要求1~7中任一项所述的并联化成装置,其特征在于,每一所述夹持组件的第一夹持件还包括绝缘体,每一所述夹持组件的第一夹持件的所述绝缘体夹设于相应的所述正极柱和相应的所述负极柱之间。
9.一种并联化成设备,其特征在于,包括水平矫正器、壳体和如权利要求1~8中任一项所述的并联化成装置,至少两个层叠设置的所述夹持机构和所述水平矫正器均设置在所述壳体内,所述水平矫正器与任一所述夹持机构的所述安装板连接,所述水平矫正器用于调整所述安装板的水平度。
10.一种锂离子电池,其特征在于,采用权利要求9所述的并联化成设备化成得到。
技术总结